scispace - formally typeset
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TLDR
Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Abstract
The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of stateof-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Optoelectronic Synapse Based on IGZO-Alkylated Graphene Oxide Hybrid Structure

TL;DR: Owing to this enhancement of synaptic operation, the recognition rates for the Modified National Institute of Standards and Technology digit patterns improve from 36% and 49% to 50% and 62% in artificial neural networks using long‐term potentiation/depression characteristics with 20 and 100 weight states, respectively.
Journal ArticleDOI

Multi-task Deep Reinforcement Learning with PopArt

TL;DR: This work proposes to automatically adapt the contribution of each task to the agent’s updates, so that all tasks have a similar impact on the learning dynamics, and learns a single trained policy that exceeds median human performance on this multi-task domain.
Proceedings ArticleDOI

A deep reinforcement learning based framework for power-efficient resource allocation in cloud RANs

TL;DR: A novel DRL-based framework for power-efficient resource allocation in cloud RANs is presented, which can achieve significant power savings while meeting user demands, and it can well handle highly dynamic cases.
Journal ArticleDOI

Knowledge-Defined Networking

TL;DR: In this article, the authors explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of AI techniques in the context of network operation and control.
Book ChapterDOI

Learning Heuristics for the TSP by Policy Gradient

TL;DR: The neural combinatorial optimization framework is extended to solve the traveling salesman problem (TSP) and the performance of the proposed framework alone is generally as good as high performance heuristics (OR-Tools).
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Related Papers (5)