scispace - formally typeset
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TLDR
Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Abstract
The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of stateof-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Potential, challenges and future directions for deep learning in prognostics and health management applications

TL;DR: A thorough evaluation of the current developments, drivers, challenges, potential solutions and future research needs in the field of deep learning applied to Prognostics and Health Management (PHM) applications can be found in this paper.
Journal ArticleDOI

A scoping review of transfer learning research on medical image analysis using ImageNet.

TL;DR: This scoping review identified the most prevalent tracks of implementation in the literature for data preparation, methodology selection and output evaluation for various medical image analysis tasks and identified several critical research gaps existing in the TL studies onmedical image analysis.
Proceedings ArticleDOI

Learning how to Active Learn: A Deep Reinforcement Learning Approach

TL;DR: A novel formulation of active learning is introduced by reframing the active learning as a reinforcement learning problem and explicitly learning a data selection policy, where the policy takes the role of the activelearning heuristic.
Journal ArticleDOI

Machine Learning for Electronically Excited States of Molecules.

TL;DR: In this article, a review of machine learning for excited states of molecules is presented, focusing on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects.
Journal ArticleDOI

Intelligent constellation diagram analyzer using convolutional neural network-based deep learning

TL;DR: An intelligent constellation diagram analyzer is proposed to implement both modulation format recognition (MFR) and optical signal-to-noise rate (OSNR) estimation by using convolution neural network (CNN)-based deep learning technique, and the effects of multiple factors on CNN performance are comprehensively investigated.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Related Papers (5)