scispace - formally typeset
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TLDR
Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Abstract
The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of stateof-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends

TL;DR: This paper presents a survey that highlights the role modeling techniques within the realm of deep learning have played within ITS, focusing on how practitioners have formulated problems to address these various challenges, and outline both architectural and problem-specific considerations used to develop solutions.
Posted Content

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation

TL;DR: This joint survey reviews the personal ideas and views of several researchers on neural-symbolic learning and reasoning and presents the challenges facing the area and avenues for further research.
Posted Content

Spatially Adaptive Computation Time for Residual Networks

TL;DR: In this paper, a deep learning architecture based on Residual Network that dynamically adjusts the number of executed layers for the regions of the image is proposed, which is end-to-end trainable, deterministic and problem-agnostic.
Posted Content

A Deep Reinforcement Learning Chatbot

TL;DR: MILA's MILABOT is capable of conversing with humans on popular small talk topics through both speech and text and consists of an ensemble of natural language generation and retrieval models, including template-based models, bag-of-words models, sequence-to-sequence neural network and latent variable neural network models.
Journal ArticleDOI

Fp-bnn

TL;DR: FP-BNN, a binarized neural network (BNN) for FPGAs, is presented, which drastically cuts down the hardware consumption while maintaining acceptable accuracy, and an inference performance of Tera opartions per second with acceptable accuracy loss is obtained.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Related Papers (5)