scispace - formally typeset
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TLDR
Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Abstract
The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of stateof-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1

TL;DR: BinaryNet, a method which trains DNNs with binary weights and activations when computing parameters’ gradient is introduced, which drastically reduces memory usage and replaces most multiplications by 1-bit exclusive-not-or (XNOR) operations, which might have a big impact on both general-purpose and dedicated Deep Learning hardware.
Journal ArticleDOI

Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials.

Wei Ma, +2 more
- 01 Jun 2018 - 
TL;DR: A deep-learning-based model is reported, comprising two bidirectional neural networks assembled by a partial stacking strategy, to automatically design and optimize three-dimensional chiral metamaterials with strong chiroptical responses at predesignated wavelengths.
Journal ArticleDOI

Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

TL;DR: The authors investigate how these methods approach learning in order to assess the dependability of their decision making and propose a semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines.
Journal ArticleDOI

Toward Causal Representation Learning

TL;DR: The authors reviewed fundamental concepts of causal inference and related them to crucial open problems of machine learning, including transfer and generalization, thereby assaying how causality can contribute to modern machine learning research.
Proceedings ArticleDOI

Ray: a distributed framework for emerging AI applications

TL;DR: Ray as mentioned in this paper is a distributed system that implements a unified interface that can express both task-parallel and actor-based computations, supported by a single dynamic execution engine and employs a distributed scheduler and a distributed and fault-tolerant store to manage the control state.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Related Papers (5)