scispace - formally typeset
Open AccessJournal ArticleDOI

Measurement of the inclusive jet cross section using the kT algorithm in pp̄ collisions at s=1.96TeV with the CDF II detector

A. Abulencia, +691 more
- 08 Jun 2007 - 
- Vol. 75, Iss: 9, pp 092006
Reads0
Chats0
TLDR
In this paper, measurements of the inclusive jet production cross section as a function of the jet transverse momentum in p{bar p} collisions at {radical}s = 1.96 TeV, using the k{sub T} algorithm and a data sample corresponding to 1.0 fb{sup -1} collected with the Collider Detector at Fermilab in Run II.
Abstract
The authors report on measurements of the inclusive jet production cross section as a function of the jet transverse momentum in p{bar p} collisions at {radical}s = 1.96 TeV, using the k{sub T} algorithm and a data sample corresponding to 1.0 fb{sup -1} collected with the Collider Detector at Fermilab in Run II. The measurements are carried out in five different jet rapidity regions with |y{sup jet}| < 2.1 and transverse momentum in the range 54 < p{sub T}{sup jet} < 700 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.

read more

Content maybe subject to copyright    Report

Article
Reference
Measurement of the inclusive jet cross section using the k
T
algorithm
in pp collisions at s√=1.96  TeV with the CDF II detector
CDF Collaboration
CAMPANELLI, Mario (Collab.), et al.
Abstract
We report on measurements of the inclusive jet production cross section as a function of the
jet transverse momentum in pp collisions at s√=1.96  TeV, using the kT algorithm and a data
sample corresponding to 1.0  fb−1 collected with the Collider Detector at Fermilab in run II. The
measurements are carried out in five different jet rapidity regions with |yjet|
CDF Collaboration, CAMPANELLI, Mario (Collab.), et al. Measurement of the inclusive jet cross
section using the k
T
algorithm in pp collisions at s√=1.96  TeV with the CDF II detector. Physical
review. D. Particles, fields, gravitation, and cosmology, 2007, vol. 75, no. 09, p. 092006
DOI : 10.1103/PhysRevD.75.092006
Available at:
http://archive-ouverte.unige.ch/unige:38443
Disclaimer: layout of this document may differ from the published version.
1 / 1

Measurement of the inclusive jet cross section using the k
T
algorithm in p
p collisions at

s
p
1:96 TeV with the CDF II detector
A. Abulencia,
24
J. Adelman,
13
T. Affolder,
10
T. Akimoto,
56
M. G. Albrow,
17
D. Ambrose,
17
S. Amerio,
44
D. Amidei,
35
A. Anastassov,
53
K. Anikeev,
17
A. Annovi,
19
J. Antos,
14
M. Aoki,
56
G. Apollinari,
17
J.-F. Arguin,
34
T. Arisawa,
58
A. Artikov,
15
W. Ashmanskas,
17
A. Attal,
8
F. Azfar,
43
P. Azzi-Bacchetta,
44
P. Azzurri,
47
N. Bacchetta,
44
W. Badgett,
17
A. Barbaro-Galtieri,
29
V. E. Barnes,
49
B. A. Barnett,
25
S. Baroiant,
7
V. Bartsch,
31
G. Bauer,
33
F. Bedeschi,
47
S. Behari,
25
S. Belforte,
55
G. Bellettini,
47
J. Bellinger,
60
A. Belloni,
33
D. Benjamin,
16
A. Beretvas,
17
J. Beringer,
29
T. Berry,
30
A. Bhatti,
51
M. Binkley,
17
D. Bisello,
44
R. E. Blair,
2
C. Blocker,
6
B. Blumenfeld,
25
A. Bocci,
16
A. Bodek,
50
V. Boisvert,
50
G. Bolla,
49
A. Bolshov,
33
D. Bortoletto,
49
J. Boudreau,
48
A. Boveia,
10
B. Brau,
10
L. Brigliadori,
5
C. Bromberg,
36
E. Brubaker,
13
J. Budagov,
15
H. S. Budd,
50
S. Budd,
24
S. Budroni,
47
K. Burkett,
17
G. Busetto,
44
P. Bussey,
21
K. L. Byrum,
2
S. Cabrera,
16,o
M. Campanelli,
20
M. Campbell,
35
F. Canelli,
17
A. Canepa,
49
S. Carillo,
18,i
D. Carlsmith,
60
R. Carosi,
47
S. Carron,
34
M. Casarsa,
55
A. Castro,
5
P. Catastini,
47
D. Cauz,
55
M. Cavalli-Sforza,
3
A. Cerri,
29
L. Cerrito,
43,m
S. H. Chang,
28
Y. C. Chen,
1
M. Chertok,
7
G. Chiarelli,
47
G. Chlachidze,
15
F. Chlebana,
17
I. Cho,
28
K. Cho,
28
D. Chokheli,
15
J. P. Chou,
22
G. Choudalakis,
33
S. H. Chuang,
60
K. Chung,
12
W. H. Chung,
60
Y. S. Chung,
50
M. Ciljak,
47
C. I. Ciobanu,
24
M. A. Ciocci,
47
A. Clark,
20
D. Clark,
6
M. Coca,
16
G. Compostella,
44
M. E. Convery,
51
J. Conway,
7
B. Cooper,
36
K. Copic,
35
M. Cordelli,
19
G. Cortiana,
44
F. Crescioli,
47
C. Cuenca Almenar,
7,o
J. Cuevas,
11,l
R. Culbertson,
17
J. C. Cully,
35
D. Cyr,
60
S. DaRonco,
44
M. Datta,
17
S. D’Auria,
21
T. Davies,
21
M. D’Onofrio,
3
D. Dagenhart,
6
P. de Barbaro,
50
S. De Cecco,
52
A. Deisher,
29
G. De Lentdecker,
50,c
M. Dell’Orso,
47
F. Delli Paoli,
44
L. Demortier,
51
J. Deng,
16
M. Deninno,
5
D. De Pedis,
52
P. F. Derwent,
17
G. P. Di Giovanni,
45
C. Dionisi,
52
B. Di Ruzza,
55
J. R. Dittmann,
4
P. DiTuro,
53
C. Do
¨
rr,
26
S. Donati,
47
M. Donega,
20
P. Dong,
8
J. Donini,
44
T. Dorigo,
44
S. Dube,
53
J. Efron,
40
R. Erbacher,
7
D. Errede,
24
S. Errede,
24
R. Eusebi,
17
H. C. Fang,
29
S. Farrington,
30
I. Fedorko,
47
W. T. Fedorko,
13
R. G. Feild,
61
M. Feindt,
26
J. P. Fernandez,
32
R. Field,
18
G. Flanagan,
49
A. Foland,
22
S. Forrester,
7
G. W. Foster,
17
M. Franklin,
22
J. C. Freeman,
29
I. Furic,
13
M. Gallinaro,
51
J. Galyardt,
12
J. E. Garcia,
47
F. Garberson,
10
A. F. Garfinkel,
49
C. Gay,
61
H. Gerberich,
24
D. Gerdes,
35
S. Giagu,
52
P. Giannetti,
47
A. Gibson,
29
K. Gibson,
48
J. L. Gimmell,
50
C. Ginsburg,
17
N. Giokaris,
15,a
M. Giordani,
55
P. Giromini,
19
M. Giunta,
47
G. Giurgiu,
12
V. Glagolev,
15
D. Glenzinski,
17
M. Gold,
38
N. Goldschmidt,
18
J. Goldstein,
43,b
A. Golossanov,
17
G. Gomez,
11
G. Gomez-Ceballos,
11
M. Goncharov,
54
O. Gonza
´
lez,
32
I. Gorelov,
38
A. T. Goshaw,
16
K. Goulianos,
51
A. Gresele,
44
M. Griffiths,
30
S. Grinstein,
22
C. Grosso-Pilcher,
13
R. C. Group,
18
U. Grundler,
24
J. Guimaraes da Costa,
22
Z. Gunay-Unalan,
36
C. Haber,
29
K. Hahn,
33
S. R. Hahn,
17
E. Halkiadakis,
53
A. Hamilton,
34
B.-Y. Han,
50
J. Y. Han,
50
R. Handler,
60
F. Happacher,
19
K. Hara,
56
M. Hare,
57
S. Harper,
43
R. F. Harr,
59
R. M. Harris,
17
M. Hartz,
48
K. Hatakeyama,
51
J. Hauser,
8
A. Heijboer,
46
B. Heinemann,
30
J. Heinrich,
46
C. Henderson,
33
M. Herndon,
60
J. Heuser,
26
D. Hidas,
16
C. S. Hill,
10,b
D. Hirschbuehl,
26
A. Hocker,
17
A. Holloway,
22
S. Hou,
1
M. Houlden,
30
S.-C. Hsu,
9
B. T. Huffman,
43
R. E. Hughes,
40
U. Husemann,
61
J. Huston,
36
J. Incandela,
10
G. Introzzi,
47
M. Iori,
52
Y. Ishizawa,
56
A. Ivanov,
7
B. Iyutin,
33
E. James,
17
D. Jang,
53
B. Jayatilaka,
35
D. Jeans,
52
H. Jensen,
17
E. J. Jeon,
28
S. Jindariani,
18
M. Jones,
49
K. K. Joo,
28
S. Y. Jun,
12
J. E. Jung,
28
T. R. Junk,
24
T. Kamon,
54
P. E. Karchin,
59
Y. Kato,
42
Y. Kemp,
26
R. Kephart,
17
U. Kerzel,
26
V. Khotilovich,
54
B. Kilminster,
40
D. H. Kim,
28
H. S. Kim,
28
J. E. Kim,
28
M. J. Kim,
12
S. B. Kim,
28
S. H. Kim,
56
Y. K. Kim,
13
N. Kimura,
56
L. Kirsch,
6
S. Klimenko,
18
M. Klute,
33
B. Knuteson,
33
B. R. Ko,
16
K. Kondo,
58
D. J. Kong,
28
J. Konigsberg,
18
A. Korytov,
18
A. V. Kotwal,
16
A. Kovalev,
46
A. C. Kraan,
46
J. Kraus,
24
I. Kravchenko,
33
M. Kreps,
26
J. Kroll,
46
N. Krumnack,
4
M. Kruse,
16
V. Krutelyov,
10
T. Kubo,
56
S. E. Kuhlmann,
2
T. Kuhr,
26
Y. Kusakabe,
58
S. Kwang,
13
A. T. Laasanen,
49
S. Lai,
34
S. Lami,
47
S. Lammel,
17
M. Lancaster,
31
R. L. Lander,
7
K. Lannon,
40
A. Lath,
53
G. Latino,
47
I. Lazzizzera,
44
T. LeCompte,
2
J. Lee,
50
J. Lee,
28
Y. J. Lee,
28
S. W. Lee,
54,n
R. Lefe
`
vre,
3
N. Leonardo,
33
S. Leone,
47
S. Levy,
13
J. D. Lewis,
17
C. Lin,
61
C. S. Lin,
17
M. Lindgren,
17
E. Lipeles,
9
A. Lister,
7
D. O. Litvintsev,
17
T. Liu,
17
N. S. Lockyer,
46
A. Loginov,
61
M. Loreti,
44
P. Loverre,
52
R.-S. Lu,
1
D. Lucchesi,
44
P. Lujan,
29
P. Lukens,
17
G. Lungu,
18
L. Lyons,
43
J. Lys,
29
R. Lysak,
14
E. Lytken,
49
P. Mack,
26
D. MacQueen,
34
R. Madrak,
17
K. Maeshima,
17
K. Makhoul,
33
T. Maki,
23
P. Maksimovic,
25
S. Malde,
43
G. Manca,
30
F. Margaroli,
5
R. Marginean,
17
C. Marino,
26
C. P. Marino,
24
A. Martin,
61
M. Martin,
25
V. Martin,
21,g
M. Martı
´
nez,
3
T. Maruyama,
56
P. Mastrandrea,
52
T. Masubuchi,
56
H. Matsunaga,
56
M. E. Mattson,
59
R. Mazini,
34
P. Mazzanti,
5
K. S. McFarland,
50
P. McIntyre,
54
R. McNulty,
30,f
A. Mehta,
30
P. Mehtala,
23
S. Menzemer,
11,h
A. Menzione,
47
P. Merkel,
49
C. Mesropian,
51
A. Messina,
36
T. Miao,
17
N. Miladinovic,
6
J. Miles,
33
R. Miller,
36
C. Mills,
10
M. Milnik,
26
A. Mitra,
1
G. Mitselmakher,
18
A. Miyamoto,
27
S. Moed,
20
N. Moggi,
5
B. Mohr,
8
R. Moore,
17
M. Morello,
47
P. Movilla Fernandez,
29
J. Mu
¨
lmensta
¨
dt,
29
A. Mukherjee,
17
Th. Muller,
26
R. Mumford,
25
P. Murat,
17
J. Nachtman,
17
PHYSICAL REVIEW D 75, 092006 (2007)
1550-7998=2007=75(9)=092006(19) 092006-1 2007 The American Physical Society

A. Nagano,
56
J. Naganoma,
58
I. Nakano,
41
A. Napier,
57
V. Necula,
18
C. Neu,
46
M. S. Neubauer,
9
J. Nielsen,
29
T. Nigmanov,
48
L. Nodulman,
2
O. Norniella,
3
E. Nurse,
31
S. H. Oh,
16
Y. D. Oh,
28
I. Oksuzian,
18
T. Okusawa,
42
R. Oldeman,
30
R. Orava,
23
K. Osterberg,
23
C. Pagliarone,
47
E. Palencia,
11
V. Papadimitriou,
17
A. A. Paramonov,
13
B. Parks,
40
S. Pashapour,
34
J. Patrick,
17
G. Pauletta,
55
M. Paulini,
12
C. Paus,
33
D. E. Pellett,
7
A. Penzo,
55
T. J. Phillips,
16
G. Piacentino,
47
J. Piedra,
45
L. Pinera,
18
K. Pitts,
24
C. Plager,
8
L. Pondrom,
60
X. Portell,
3
O. Poukhov,
15
N. Pounder,
43
F. Prakoshyn,
15
A. Pronko,
17
J. Proudfoot,
2
F. Ptohos,
19,e
G. Punzi,
47
J. Pursley,
25
J. Rademacker,
43,b
A. Rahaman,
48
N. Ranjan,
49
S. Rappoccio,
22
B. Reisert,
17
V. Rekovic,
38
P. Renton,
43
M. Rescigno,
52
S. Richter,
26
F. Rimondi,
5
L. Ristori,
47
A. Robson,
21
T. Rodrigo,
11
E. Rogers,
24
S. Rolli,
57
R. Roser,
17
M. Rossi,
55
R. Rossin,
18
A. Ruiz,
11
J. Russ,
12
V. Rusu,
13
H. Saarikko,
23
S. Sabik,
34
A. Safonov,
54
W. K. Sakumoto,
50
G. Salamanna,
52
O. Salto
´
,
3
D. Saltzberg,
8
C. Sa
´
nchez,
3
L. Santi,
55
S. Sarkar,
52
L. Sartori,
47
K. Sato,
17
P. Savard,
34
A. Savoy-Navarro,
45
T. Scheidle,
26
P. Schlabach,
17
E. E. Schmidt,
17
M. P. Schmidt,
61
M. Schmitt,
39
T. Schwarz,
7
L. Scodellaro,
11
A. L. Scott,
10
A. Scribano,
47
F. Scuri,
47
A. Sedov,
49
S. Seidel,
38
Y. Seiya,
42
A. Semenov,
15
L. Sexton-Kennedy,
17
A. Sfyrla,
20
M. D. Shapiro,
29
T. Shears,
30
P. F. Shepard,
48
D. Sherman,
22
M. Shimojima,
56,k
M. Shochet,
13
Y. Shon,
60
I. Shreyber,
37
A. Sidoti,
47
P. Sinervo,
34
A. Sisakyan,
15
J. Sjolin,
43
A. J. Slaughter,
17
J. Slaunwhite,
40
K. Sliwa,
57
J. R. Smith,
7
F. D. Snider,
17
R. Snihur,
34
M. Soderberg,
35
A. Soha,
7
S. Somalwar,
53
V. Sorin,
36
J. Spalding,
17
F. Spinella,
47
T. Spreitzer,
34
P. Squillacioti,
47
M. Stanitzki,
61
A. Staveris-Polykalas,
47
R. St. Denis,
21
B. Stelzer,
8
O. Stelzer-Chilton,
43
D. Stentz,
39
J. Strologas,
38
D. Stuart,
10
J. S. Suh,
28
A. Sukhanov,
18
H. Sun,
57
T. Suzuki,
56
A. Taffard,
24
R. Takashima,
41
Y. Takeuchi,
56
K. Takikawa,
56
M. Tanaka,
2
R. Tanaka,
41
M. Tecchio,
35
P. K. Teng,
1
K. Terashi,
51
J. Thom,
17,d
A. S. Thompson,
21
E. Thomson,
46
P. Tipton,
61
V. Tiwari,
12
S. Tkaczyk,
17
D. Toback,
54
S. Tokar,
14
K. Tollefson,
36
T. Tomura,
56
D. Tonelli,
47
S. Torre,
19
D. Torretta,
17
S. Tourneur,
45
W. Trischuk,
34
R. Tsuchiya,
58
S. Tsuno,
41
N. Turini,
47
F. Ukegawa,
56
T. Unverhau,
21
S. Uozumi,
56
D. Usynin,
46
S. Vallecorsa,
20
N. van Remortel,
23
A. Varganov,
35
E. Vataga,
38
F. Va
´
zquez,
18,i
G. Velev,
17
G. Veramendi,
24
V. Veszpremi,
49
R. Vidal,
17
I. Vila,
11
R. Vilar,
11
T. Vine,
31
I. Vollrath,
34
I. Volobouev,
29,n
G. Volpi,
47
F. Wu
¨
rthwein,
9
P. Wagner,
54
R. G. Wagner,
2
R. L. Wagner,
17
J. Wagner,
26
W. Wagner,
26
R. Wallny,
8
S. M. Wang,
1
A. Warburton,
34
S. Waschke,
21
D. Waters,
31
M. Weinberger,
54
W. C. Wester III,
17
B. Whitehouse,
57
D. Whiteson,
46
A. B. Wicklund,
2
E. Wicklund,
17
G. Williams,
34
H. H. Williams,
46
P. Wilson,
17
B. L. Winer,
40
P. Wittich,
17,d
S. Wolbers,
17
C. Wolfe,
13
T. Wright,
35
X. Wu,
20
S. M. Wynne,
30
A. Yagil,
17
K. Yamamoto,
42
J. Yamaoka,
53
T. Yamashita,
41
C. Yang,
61
U. K. Yang,
13,j
Y. C. Yang,
28
W. M. Yao,
29
G. P. Yeh,
17
J. Yoh,
17
K. Yorita,
13
T. Yoshida,
42
G. B. Yu,
50
I. Yu,
28
S. S. Yu,
17
J. C. Yun,
17
L. Zanello,
52
A. Zanetti,
55
I. Zaw,
22
X. Zhang,
24
J. Zhou,
53
and S. Zucchelli
5
(CDF Collaboration)
1
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2
Argonne National Laboratory, Argonne, Illinois 60439, USA
3
Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
4
Baylor University, Waco, Texas 76798, USA
5
Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
6
Brandeis University, Waltham, Massachusetts 02254, USA
7
University of California, Davis, Davis, California 95616, USA
8
University of California, Los Angeles, Los Angeles, California 90024, USA
9
University of California, San Diego, La Jolla, California 92093, USA
10
University of California, Santa Barbara, Santa Barbara, California 93106, USA
11
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
12
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
13
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
14
Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
15
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
16
Duke University, Durham, North Carolina 27708, USA
17
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
18
University of Florida, Gainesville, Florida 32611, USA
19
Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
20
University of Geneva, CH-1211 Geneva 4, Switzerland
21
Glasgow University, Glasgow G12 8QQ, United Kingdom
22
Harvard University, Cambridge, Massachusetts 02138, USA
23
Division of High Energy Physics, Department of Physics, University of Helsinki,
and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
A. ABULENCIA et al. PHYSICAL REVIEW D 75, 092006 (2007)
092006-2

24
University of Illinois, Urbana, Illinois 61801, USA
25
The Johns Hopkins University, Baltimore, Maryland 21218, USA
26
Institut fu
¨
r Experimentelle Kernphysik, Universita
¨
t Karlsruhe, 76128 Karlsruhe, Germany
27
High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
28
Center for High Energy Physics: Kyungpook National University, Taegu 702-701, Korea; Seoul National University, Seoul 151-742,
Korea; and SungKyunKwan University, Suwon 440-746, Korea
29
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
30
University of Liverpool, Liverpool L69 7ZE, United Kingdom
31
University College London, London WC1E 6BT, United Kingdom
32
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
33
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
34
Institute of Particle Physics: McGill University, Montre
´
al, Canada H3A 2T8; and University of Toronto, Toronto, Canada M5S 1A7
35
University of Michigan, Ann Arbor, Michigan 48109, USA
36
Michigan State University, East Lansing, Michigan 48824, USA
37
Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
38
University of New Mexico, Albuquerque, New Mexico 87131, USA
39
Northwestern University, Evanston, Illinois 60208, USA
40
The Ohio State University, Columbus, Ohio 43210, USA
41
Okayama University, Okayama 700-8530, Japan
42
Osaka City University, Osaka 588, Japan
43
University of Oxford, Oxford OX1 3RH, United Kingdom
44
University of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
45
LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
46
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
47
Istituto Nazionale di Fisica Nucleare Pisa, Universities of Pisa, Siena and Scuola Normale Superiore, I-56127 Pisa, Italy
48
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
49
Purdue University, West Lafayette, Indiana 47907, USA
50
University of Rochester, Rochester, New York 14627, USA
51
The Rockefeller University, New York, New York 10021, USA
52
Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University of Rome ‘La Sapienza’’, I-00185 Roma, Italy
53
Rutgers University, Piscataway, New Jersey 08855, USA
54
Texas A&M University, College Station, Texas 77843, USA
55
Istituto Nazionale di Fisica Nucleare, University of Trieste/Udine, Italy
56
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
57
Tufts University, Medford, Massachusetts 02155, USA
58
Waseda University, Tokyo 169, Japan
59
Wayne State University, Detroit, Michigan 48201, USA
60
University of Wisconsin, Madison, Wisconsin 53706, USA
61
Yale University, New Haven, Connecticut 06520, USA
(Received 29 January 2007; published 24 May 2007; publisher error corrected 25 May 2007)
We report on measurements of the inclusive jet production cross section as a function of the jet
transverse momentum in p
p collisions at

s
p
1:96 TeV, using the k
T
algorithm and a data sample
corresponding to 1:0fb
1
collected with the Collider Detector at Fermilab in run II. The measurements
are carried out in five different jet rapidity regions with jy
jet
j < 2:1 and transverse momentum in the range
a
Visiting scientist from University of Athens, 157 84 Athens, Greece.
n
Visiting scientist from Texas Tech University, Lubbock, TX 79409, USA.
m
Visiting scientist from Queen Mary and Westfield College, London, E1 4NS, United Kingdom.
l
Visiting scientist from Universidad de Oviedo, E-33007 Oviedo, Spain.
k
Visiting scientist from Nagasaki Institute of Applied Science, Nagasaki, Japan.
j
Visiting scientist from University of Manchester, Manchester M13 9PL, United Kingdom.
i
Visiting scientist from University of Iberoamericana, Mexico D.F., Mexico.
h
Visiting scientist from University of Heidelberg, D-69120 Heidelberg, Germany.
g
Visiting scientist from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
f
Visiting scientist from University College Dublin, Dublin 4, Ireland.
e
Visiting scientist from University of Cyprus, Nicosia CY-1678, Cyprus.
d
Visiting scientist from Cornell University, Ithaca, NY 14853, USA.
c
Visiting scientist from Universite Libre de Bruxelles (ULB), B-1050 Brussels, Belgium.
b
Visiting scientist from University of Bristol, Bristol BS8 1TL, United Kingdom.
o
Visiting scientist from Instituto de Fisica Corpuscular (IFIC), 46071 Valencia, Spain.
MEASUREMENT OF THE INCLUSIVE ... PHYSICAL REVIEW D 75, 092006 (2007)
092006-3

54 <p
jet
T
< 700 GeV=c. Next-to-leading order perturbative QCD predictions are in good agreement with
the measured cross sections.
DOI: 10.1103/PhysRevD.75.092006 PACS numbers: 12.38.Aw, 13.85.t, 13.87.a
I. INTRODUCTION
The measurement of the inclusive jet cross section as a
function of the jet transverse momentum, p
jet
T
,inp
p colli-
sions at

s
p
1:96 TeV constitutes a test of perturbative
quantum chromodynamics (pQCD) [1]. In run II [2] of the
Tevatron, measurements of the jet cross section for jets
with p
jet
T
up to about 700 GeV=c [3,4] have extended the
p
jet
T
range by more than 150 GeV=c compared to run I [5
7]. In particular, the CDF collaboration recently published
results [3] on inclusive jet production using the k
T
algo-
rithm [8,9] for jets with p
jet
T
> 54 GeV=c and rapidity [10]
in the region 0:1 < jy
jet
j < 0:7, which are well described
by next-to-leading order (NLO) pQCD predictions [11]. As
discussed in [3], the k
T
algorithm has been widely used for
precise QCD measurements at both e
e
and e
p col-
liders, and makes possible a well-defined comparison to
the theoretical predictions [9]. The pQCD calculations
involve matrix elements, describing the hard interaction
between partons, convoluted with parton density functions
(PDFs) [12,13] in the proton and antiproton that require
input from experiment. The pQCD predictions are affected
by the still-limited knowledge of the gluon PDF, which
translates into a large uncertainty on the theoretical cross
sections at high p
jet
T
[3,4]. Inclusive jet cross section mea-
surements from run I at the Tevatron [6], performed in
different jet rapidity regions, have been used to partially
constrain the gluon distribution in the proton. This article
continues the studies on jet production using the k
T
algo-
rithm at the Tevatron [3,7] and presents new measurements
of the inclusive jet production cross section as a function of
p
jet
T
in five different jet rapidity regions up to jy
jet
j2:1,
based on 1:0fb
1
of CDF run II data. The measurements
are corrected to the hadron level [14] and compared to
NLO pQCD predictions.
II. EXPERIMENTAL SETUP
The CDF II detector (see Fig. 1) is described in detail in
[15]. The subdetectors most relevant for this analysis are
discussed briefly here. The detector has a charged particle
tracking system immersed in a 1.4 T magnetic field. A
silicon microstrip detector [16] provides tracking over the
radial range 1.35 to 28 cm and covers the pseudorapidity
range jj < 2. A 3.1-m-long open-cell drift chamber [17]
covers the radial range from 44 to 132 cm and provides
tracking coverage for jj < 1. Segmented sampling calo-
rimeters, arranged in a projective tower geometry, surround
the tracking system and measure the energy of interacting
particles for jj < 3:6. The central barrel calorimeter [18]
covers the region jj < 1. It consists of two sections, an
electromagnetic calorimeter (CEM) and a hadronic calo-
rimeter (CHA), divided into 480 towers of size 0.1 in and
0.26 in . The end-wall hadronic calorimeter (WHA) [19]
is behind the central barrel calorimeter in the region 0:6 <
jj < 1:0, providing forward coverage out to jj < 1:3.In
run II, new forward scintillator-plate calorimeters [20]
replaced the run I gas calorimeter system. The new plug
electromagnetic calorimeter (PEM) covers the region
1:1 < jj < 3:6, while the new hadronic calorimeter
(PHA) provides coverage in the 1:3 < jj < 3:6 region.
The calorimeter has gaps at jj0 (between the two
halves of the central barrel calorimeter) and at jj1:1
(in the region between the WHA and the plug calorime-
ters). The measured energy resolutions for electrons in the
electromagnetic calorimeters [18,20] are 14%=

E
T
p
2%
(CEM) and 16%=

E
p
1% (PEM), where the energies are
expressed in GeV. The single-pion energy resolutions in
the hadronic calorimeters, as determined in test-beam data
EQ-TARGET;temp:intralink-;da1;316;433
η=2.0
η=3.0
η=1.0
PEM
CEM
CHA
WHA
PHA
FIG. 1. Elevation view of one-half of the CDF detector dis-
playing the components of the CDF calorimeter.
A. ABULENCIA et al. PHYSICAL REVIEW D 75, 092006 (2007)
092006-4

Citations
More filters
Journal ArticleDOI

Parton distributions for the LHC

TL;DR: In this paper, the authors presented an updated leading-order, next-to-leading order and next-next-ordering order parton distribution function (MSTW 2008) determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the $\overline{\mathrm{MS}}$¯¯$¯¯¯¯¯
Journal ArticleDOI

Parton distributions in the LHC era: MMHT 2014 PDFs

TL;DR: In this paper, the authors presented LO, NLO and NNLO sets of parton distribution functions (PDFs) of the proton determined from global analyses of the available hard scattering data.
Journal ArticleDOI

Pileup subtraction using jet areas

TL;DR: In this paper, a technique based on jet areas is proposed to provide jet-by-jet corrections for pileup and underlying-event effects, which can be used with any jet algorithm that can be sensibly defined.
Journal ArticleDOI

Parton distributions from high-precision collider data

TL;DR: NNPDF31 as discussed by the authors is the first global set of PDFs determined using a methodology validated by a closure test, which is motivated by recent progress in methodology and available data, and involves both on the methodological side, parametrize and determine the charm PDF alongside the light-quark and gluon ones, thereby increasing from seven to eight the number of independent PDFs.
Related Papers (5)
Frequently Asked Questions (1)
Q1. What are the contributions in this paper?

The authors report on measurements of the inclusive jet production cross section as a function of the jet transverse momentum in pp collisions at s√=1.