scispace - formally typeset
P

Peter Wittich

Researcher at Cornell University

Publications -  1791
Citations -  113222

Peter Wittich is an academic researcher from Cornell University. The author has contributed to research in topics: Large Hadron Collider & Lepton. The author has an hindex of 139, co-authored 1646 publications receiving 102731 citations. Previous affiliations of Peter Wittich include University of Florida & University of Trento.

Papers
More filters
Journal ArticleDOI

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

S. Chatrchyan, +2863 more
- 17 Sep 2012 - 
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.
Journal ArticleDOI

Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory

Q. R. Ahmad, +205 more
TL;DR: Observations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported, providing strong evidence for solar nu(e) flavor transformation.
Journal ArticleDOI

Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments

Georges Aad, +5120 more
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Journal ArticleDOI

Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory

Q. R. Ahmad, +205 more
TL;DR: In this paper, the total flux of 8B neutrinos was determined to be (5.44±0.99)×106 cm−2 s−1, in close agreement with the predictions of solar models.
Journal ArticleDOI

CMS physics technical design report, volume II: Physics performance

G. L. Bayatian, +2063 more
- 01 Jun 2007 - 
TL;DR: In this article, the authors present a detailed analysis of the performance of the Large Hadron Collider (CMS) at 14 TeV and compare it with the state-of-the-art analytical tools.