scispace - formally typeset
OtherDOI

Mechanisms of Muscle Injury, Repair, and Regeneration

James G. Tidball
- 01 Oct 2011 - 
- Vol. 1, Iss: 4, pp 2029-2062
Reads0
Chats0
TLDR
The process of muscle injury, repair and regeneration that occurs in muscular dystrophy is used as an example of chronic muscle injury to highlight similarities and differences between the injury and repair processes that occur in acutely and chronically injured muscle.
Abstract
Skeletal muscle continuously adapts to changes in its mechanical environment through modifications in gene expression and protein stability that affect its physiological function and mass. However, mechanical stresses commonly exceed the parameters that induce adaptations, producing instead acute injury. Furthermore, the relatively superficial location of many muscles in the body leaves them further vulnerable to acute injuries by exposure to extreme temperatures, contusions, lacerations or toxins. In this article, the molecular, cellular, and mechanical factors that underlie muscle injury and the capacity of muscle to repair and regenerate are presented. Evidence shows that muscle injuries that are caused by eccentric contractions result from direct mechanical damage to myofibrils. However, muscle pathology following other acute injuries is largely attributable to damage to the muscle cell membrane. Many feaures in the injury-repair-regeneration cascade relate to the unregulated influx of calcium through membrane lesions, including: (i) activation of proteases and hydrolases that contribute muscle damage, (ii) activation of enzymes that drive the production of mitogens and motogens for muscle and immune cells involved in injury and repair, and (iii) enabling protein-protein interactions that promote membrane repair. Evidence is also presented to show that the myogenic program that is activated by acute muscle injury and the inflammatory process that follows are highly coordinated, with myeloid cells playing a central role in modulating repair and regeneration. The early-invading, proinflammatory M1 macrophages remove debris caused by injury and express Th1 cytokines that play key roles in regulating the proliferation, migration, and differentiation of satellite cells. The subsequent invasion by anti-inflammatory, M2 macrophages promotes tissue repair and attenuates inflammation. Although this system provides an effective mechanism for muscle repair and regeneration following acute injury, it is dysregulated in chronic injuries. In this article, the process of muscle injury, repair and regeneration that occurs in muscular dystrophy is used as an example of chronic muscle injury, to highlight similarities and differences between the injury and repair processes that occur in acutely and chronically injured muscle.

read more

Citations
More filters
Journal ArticleDOI

The central role of muscle stem cells in regenerative failure with aging

TL;DR: A more comprehensive understanding of the interplay of stem cell–intrinsic and extrinsic factors will set the stage for improving cell therapies capable of restoring tissue homeostasis and enhancing muscle repair in the aged.
Journal ArticleDOI

Statin-Associated Autoimmune Myopathy.

TL;DR: In a fraction of patients, an autoimmune myopathy may develop, characterized by the development of autoantibodies to the target enzyme, HMG-CoA reductase, which is associated with death from cardiovascular causes.
Journal ArticleDOI

Obesity and related consequences to ageing.

TL;DR: Evidence is brought together that age- related changes in body fat distribution and metabolism might be key factors of a vicious cycle that can accelerate the ageing process and onset of age-related diseases.
Journal ArticleDOI

Skeletal muscle: A review of molecular structure and function, in health and disease.

TL;DR: The impact of environmental stressors in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis is emphasized.
References
More filters
Journal ArticleDOI

Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes.

TL;DR: Both C5a-mediated leukocyte chemotaxis and C5A-induced lysosomal enzyme release from cytochalasin B-treated cells closely paralleled uptake of the ligand, clearly indicating that it is a receptor-C5a interaction that leads to stimulation of these cellular responses.
Journal ArticleDOI

IL-4 Acts as a Myoblast Recruitment Factor during Mammalian Muscle Growth

TL;DR: It is demonstrated that following myotube formation, myotubes recruit myoblast fusion by secretion of IL-4, leading to muscle growth, which is necessary for further cell growth.
Journal ArticleDOI

Cultured endothelial cells produce a platelet-derived growth factor-like protein

TL;DR: In this paper, conditions from cultured bovine aortic endothelial cells (EC) were found to prevent platelet-derived growth factor (PDGF) binding to these receptors in a dose-dependent manner at 4°C.
Journal ArticleDOI

Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy

TL;DR: The results show that distinct subpopulations of macrophages can promote muscle injury or repair in muscular dystrophy, and that therapeutic interventions that affect the balance between M1 and M2 macrophage populations may influence the course of muscular Dystrophy.
Journal ArticleDOI

Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers

TL;DR: It is concluded that satellite cells conform to a highly coordinated program when undergoing myogenesis at their native position along the muscle fiber, and the number of proliferating satellite cells can be modulated by basic FGF but the overall schedule of cell cycle entry, proliferation, differentiation, and temporal expression of regulatory and structural proteins was unaffected.
Related Papers (5)
Trending Questions (2)
What are the mechanisms behind skeletal muscle damage?

The mechanisms behind skeletal muscle damage include direct mechanical damage to myofibrils from eccentric contractions and damage to the muscle cell membrane from other acute injuries. Calcium influx through membrane lesions plays a role in muscle pathology.

How does the body respond to muscle damage and start the process of muscle repair?

The body responds to muscle damage by activating the myogenic program and the inflammatory process, with macrophages playing a central role in modulating repair and regeneration.