scispace - formally typeset
PatentDOI

Metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions

Liming Dai
- 04 Apr 2016 - 
- Vol. 10, Iss: 5, pp 444-452
TLDR
A mesoporous carbon foam co-doped with nitrogen and phosphorus that has a large surface area and good electrocatalytic properties for both ORR and OER and is tested as an air electrode for primary and rechargeable Zn-air batteries.
Abstract
A co-doped carbon material, methods of making such materials, and electrochemical cells and devices comprising such materials are provided. The co-doped carbon material comprises a mesoporous carbon material doped with nitrogen and phoshporous (NPMC). The present NPMC exhibit catalytic activity for both oxygen reduction reaction and oxygen evolution reaction and may be useful as an electrode in an electrochemical cell and particularly as part of a battery. The present NPMC materials may be used as electrodes in primary zinc-air batteries and in rechargeable zinc-air batteries and many other energy systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

PdMo bimetallene for oxygen reduction catalysis

TL;DR: PdMo bimetallene, a highly curved and sub-nanometre-thick nanosheet of a palladium–molybdenum alloy, is an efficient and stable electrocatalyst for the oxygen reduction and evolution reactions under alkaline conditions and is suggested that other metallene materials could show great promise in energy electrocatalysis.
Journal ArticleDOI

Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices

TL;DR: Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices Dengjie Chen, ⊥,∇ Chi Chen,†,⊥ Zarah Medina Baiyee,‡,§ and Francesco Ciucci*,†.
Journal ArticleDOI

Novel MOF‐Derived Co@N‐C Bifunctional Catalysts for Highly Efficient Zn–Air Batteries and Water Splitting

TL;DR: The rational design and synthesis of a new class of Co@N-C materials (C-MOF-C2-T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported, exhibiting higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions than that of commercial Pt/C and RuO2.
Journal ArticleDOI

Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms

TL;DR: Recent progress on the design and synthesis of solid-state catalysts for the electrochemical reduction of CO2 is described, followed by the general parameters for CO2 electroreduction and a summary of the reaction apparatus.
Journal ArticleDOI

Nitrogen-Doped Porous Carbon Nanosheets Templated from g-C3 N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction.

TL;DR: This approach yields N-CNS with a high nitrogen content and comparable oxygen reduction reaction catalytic activities to commercial Pt/C catalysts in alkaline media.
References
More filters
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Journal ArticleDOI

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Journal ArticleDOI

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Journal ArticleDOI

Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance†

TL;DR: In this paper, Mesoporous graphene doped with both N and S atoms (N-S-G) was prepared in one step and studied as an electrochemical catalyst for the oxygen reduction reaction (ORR).
Related Papers (5)