scispace - formally typeset
PatentDOI

Metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions

Liming Dai
- 04 Apr 2016 - 
- Vol. 10, Iss: 5, pp 444-452
Reads0
Chats0
TLDR
A mesoporous carbon foam co-doped with nitrogen and phosphorus that has a large surface area and good electrocatalytic properties for both ORR and OER and is tested as an air electrode for primary and rechargeable Zn-air batteries.
Abstract
A co-doped carbon material, methods of making such materials, and electrochemical cells and devices comprising such materials are provided. The co-doped carbon material comprises a mesoporous carbon material doped with nitrogen and phoshporous (NPMC). The present NPMC exhibit catalytic activity for both oxygen reduction reaction and oxygen evolution reaction and may be useful as an electrode in an electrochemical cell and particularly as part of a battery. The present NPMC materials may be used as electrodes in primary zinc-air batteries and in rechargeable zinc-air batteries and many other energy systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metal-Organic Framework-Derived FeCo-N-Doped Hollow Porous Carbon Nanocubes for Electrocatalysis in Acidic and Alkaline Media.

TL;DR: The optimized FeCo2 -NPC-900 obtained by pyrolysis at 900 °C exhibits more positive half-wave potential, higher diffusion-limited current density, and better stability than the state-of-the-art Pt/C, under both alkaline and acidic media.
Journal ArticleDOI

Formation and Migration of Oxygen Vacancies in SrCoO3 and Their Effect on Oxygen Evolution Reactions

TL;DR: In this article, the authors used first-principles calculations to study oxygen vacancies in perovskite SrCoO3 from thermodynamic, electronic, and kinetic points of view.
Journal ArticleDOI

CoO-modified Co4N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media

TL;DR: In this paper, the authors developed the heterostructure of CoO-domain-anchored Co4N nanowhiskers as an effective bifunctional electrocatalyst for both oxygen and hydrogen evolution reactions (OER and HER) under mild conditions.
Journal ArticleDOI

Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications

TL;DR: A comprehensive review of recent advances in the synthesis and applications of graphdiyne-based catalysts for crucial gas involved reactions is presented in this paper, where new perspectives of opportunities and challenges in developing GDY-based catalyst for gas-involved energy conversion are also discussed.
References
More filters
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Journal ArticleDOI

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Journal ArticleDOI

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Journal ArticleDOI

Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance†

TL;DR: In this paper, Mesoporous graphene doped with both N and S atoms (N-S-G) was prepared in one step and studied as an electrochemical catalyst for the oxygen reduction reaction (ORR).
Related Papers (5)