scispace - formally typeset
PatentDOI

Metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions

Liming Dai
- 04 Apr 2016 - 
- Vol. 10, Iss: 5, pp 444-452
TLDR
A mesoporous carbon foam co-doped with nitrogen and phosphorus that has a large surface area and good electrocatalytic properties for both ORR and OER and is tested as an air electrode for primary and rechargeable Zn-air batteries.
Abstract
A co-doped carbon material, methods of making such materials, and electrochemical cells and devices comprising such materials are provided. The co-doped carbon material comprises a mesoporous carbon material doped with nitrogen and phoshporous (NPMC). The present NPMC exhibit catalytic activity for both oxygen reduction reaction and oxygen evolution reaction and may be useful as an electrode in an electrochemical cell and particularly as part of a battery. The present NPMC materials may be used as electrodes in primary zinc-air batteries and in rechargeable zinc-air batteries and many other energy systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries

TL;DR: In this article, the use of nitrogen-doped carbon nanomaterials in various electrochemical batteries such as lithium ion batteries, lithium-sulfur batteries, metal-air (oxygen) batteries and sodium ion batteries is discussed with a focus on their electrochemical properties.
Journal ArticleDOI

3D Heteroatom‐Doped Carbon Nanomaterials as Multifunctional Metal‐Free Catalysts for Integrated Energy Devices

TL;DR: Various synthesis processes of 3D porous carbon materials are summarized to understand how their physical and chemical properties together with heteroatom doping dictate the electrochemical catalytic performance.
Journal ArticleDOI

Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework

TL;DR: A scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation is reported.
References
More filters
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Journal ArticleDOI

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Journal ArticleDOI

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Journal ArticleDOI

Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance†

TL;DR: In this paper, Mesoporous graphene doped with both N and S atoms (N-S-G) was prepared in one step and studied as an electrochemical catalyst for the oxygen reduction reaction (ORR).
Related Papers (5)