scispace - formally typeset
Open AccessJournal ArticleDOI

Mitochondrial energetics in the kidney

Pallavi Bhargava, +1 more
- 01 Oct 2017 - 
- Vol. 13, Iss: 10, pp 629-646
Reads0
Chats0
TLDR
Implementing compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus and inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.
Abstract
The kidney requires a large number of mitochondria to remove waste from the blood and regulate fluid and electrolyte balance. Mitochondria provide the energy to drive these important functions and can adapt to different metabolic conditions through a number of signalling pathways (for example, mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways) that activate the transcriptional co-activator peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), and by balancing mitochondrial dynamics and energetics to maintain mitochondrial homeostasis. Mitochondrial dysfunction leads to a decrease in ATP production, alterations in cellular functions and structure, and the loss of renal function. Persistent mitochondrial dysfunction has a role in the early stages and progression of renal diseases, such as acute kidney injury (AKI) and diabetic nephropathy, as it disrupts mitochondrial homeostasis and thus normal kidney function. Improving mitochondrial homeostasis and function has the potential to restore renal function, and administering compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus. Furthermore, inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.

read more

Citations
More filters
Journal ArticleDOI

Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment.

TL;DR: More mechanistic studies are needed to better understand the convoluted pathophysiology of S-AKI and to translate these findings into potential treatment strategies and add to the promising pharmacologic approaches being developed and tested in clinical trials.
Journal ArticleDOI

Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance.

TL;DR: In this article, the authors investigated the specific role of mtROS in initiating mitochondrial DNA (mtDNA) damage and inflammation during IRI-AKI, and they found that mt-ROS can promote renal injury by suppressing TFAM-mediated mtDNA maintenance, resulting in decreased mitochondrial energy metabolism and increased cytokine release.
Journal ArticleDOI

Sirtuins in Renal Health and Disease

TL;DR: An overview of the biologic effects of sirtuins and the molecular targets thereof regulating renal physiology is provided, highlighting the key role of SIRT1, SIRT3, and now SIRT6 as potential therapeutic targets.
Journal ArticleDOI

Mitochondrial quality control in kidney injury and repair.

TL;DR: The role of mitochondrial quality control mechanisms in kidney injury and repair is discussed and their potential as therapeutic targets are highlighted.
Journal ArticleDOI

Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities

TL;DR: This review examines the recent preclinical and clinical research about the potentially harmful effects of lipid effects in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.
References
More filters
Journal ArticleDOI

Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases.

TL;DR: The role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced are reviewed and natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors are discussed.
Journal ArticleDOI

Mitophagy: Basic Mechanism and Potential Role in Kidney Diseases

TL;DR: This review provides updated information on mitophagy and suggests a potential role ofMitophagy in renal pathophysiology, an important mechanism of mitochondrial quality control in physiological and pathological conditions.
Journal ArticleDOI

Misconceptions about Aerobic and Anaerobic Energy Expenditure

TL;DR: The measurement of gas exchange has played an invaluable role in metabolic interpretation and the importance of such a conversion and the potential for misinterpretation is demonstrated.
Journal ArticleDOI

Protective effect of peroxisome proliferator activated receptor gamma agonists on diabetic and non-diabetic renal diseases.

TL;DR: Peroxisome proliferator activated receptor gamma (PPARγ) agonist has not only antidiabetic effect but also a protective effect against various types of injury of the kidney.
Journal ArticleDOI

Bnip3-mediated defects in oxidative phosphorylation promote mitophagy.

TL;DR: How Bnip3-mediated impairment of mitochondrial oxidative phosphorylation facilitates mitochondrial turnover via autophagy in the absence of permeabilization of the mitochondrial membrane and apoptosis is discussed.
Related Papers (5)