scispace - formally typeset
Open AccessJournal ArticleDOI

Mitochondrial energetics in the kidney

Pallavi Bhargava, +1 more
- 01 Oct 2017 - 
- Vol. 13, Iss: 10, pp 629-646
Reads0
Chats0
TLDR
Implementing compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus and inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.
Abstract
The kidney requires a large number of mitochondria to remove waste from the blood and regulate fluid and electrolyte balance. Mitochondria provide the energy to drive these important functions and can adapt to different metabolic conditions through a number of signalling pathways (for example, mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways) that activate the transcriptional co-activator peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), and by balancing mitochondrial dynamics and energetics to maintain mitochondrial homeostasis. Mitochondrial dysfunction leads to a decrease in ATP production, alterations in cellular functions and structure, and the loss of renal function. Persistent mitochondrial dysfunction has a role in the early stages and progression of renal diseases, such as acute kidney injury (AKI) and diabetic nephropathy, as it disrupts mitochondrial homeostasis and thus normal kidney function. Improving mitochondrial homeostasis and function has the potential to restore renal function, and administering compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus. Furthermore, inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.

read more

Citations
More filters
Journal ArticleDOI

Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment.

TL;DR: More mechanistic studies are needed to better understand the convoluted pathophysiology of S-AKI and to translate these findings into potential treatment strategies and add to the promising pharmacologic approaches being developed and tested in clinical trials.
Journal ArticleDOI

Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance.

TL;DR: In this article, the authors investigated the specific role of mtROS in initiating mitochondrial DNA (mtDNA) damage and inflammation during IRI-AKI, and they found that mt-ROS can promote renal injury by suppressing TFAM-mediated mtDNA maintenance, resulting in decreased mitochondrial energy metabolism and increased cytokine release.
Journal ArticleDOI

Sirtuins in Renal Health and Disease

TL;DR: An overview of the biologic effects of sirtuins and the molecular targets thereof regulating renal physiology is provided, highlighting the key role of SIRT1, SIRT3, and now SIRT6 as potential therapeutic targets.
Journal ArticleDOI

Mitochondrial quality control in kidney injury and repair.

TL;DR: The role of mitochondrial quality control mechanisms in kidney injury and repair is discussed and their potential as therapeutic targets are highlighted.
Journal ArticleDOI

Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities

TL;DR: This review examines the recent preclinical and clinical research about the potentially harmful effects of lipid effects in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.
References
More filters
Journal ArticleDOI

Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice.

TL;DR: The results suggest that fenofibrate improves lipotoxicity via activation of AMPK-PGC-1 α-ERR-1α-FoxO3a signaling, showing its potential as a therapeutic modality for diabetic nephropathy.
Journal ArticleDOI

Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations.

TL;DR: The data suggest that pharmacological activation of AMPK may enhance glucose uptake in individuals with type II diabetes, however, this benefit may be offset by the concomitant elevation in triglycerides.
Journal ArticleDOI

Mitochondrial dynamics and neurodegeneration

TL;DR: These studies establish mitochondrial dynamics as a new paradigm for neurodegenerattve disease research and compounds that modulate mitochondrial fission/fusion could have therapeutic value in disease intervention.
Journal ArticleDOI

Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury.

TL;DR: The current pathophysiology of AKI is addressed in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy, which could lead to novel therapies in AKI.
Related Papers (5)