scispace - formally typeset
Open AccessBook

Modern electric, hybrid electric, and fuel cell vehicles : fundamentals, theory, and design

Reads0
Chats0
TLDR
This document discusses the design and control principles of the Hybrid Electric Drive Trains, and the designs of the Drive Train Engine/Generator Power Design and Energy Design of Energy Storage Appendices Index.
Abstract
Environmental Impact and History of Modern Transportation Air Pollution Global Warming Petroleum Resources Induced Costs Importance of Different Transportation Development Strategies to Future Oil Supply History of EVs History of HEVs History of Fuel Cell Vehicles Fundamentals of Vehicle Propulsion and Brake General Description of Vehicle Movement Vehicle Resistance Dynamic Equation Tire-Ground Adhesion and Maximum Tractive Effort Power Train Tractive Effort and Vehicle Speed Vehicle Power Plant and Transmission Characteristics Vehicle Performance Operating Fuel Economy Brake Performance Internal Combustion Engines 4S, Spark-Ignited IC Engines 4S, Compression-Ignition IC Engines 2S Engines Wankel Rotary Engines Stirling Engines Gas Turbine Engines Quasi-Isothermal Brayton Cycle Engines Electric Vehicles Configurations of EVs Performance of EVs Tractive Effort in Normal Driving Energy Consumption Hybrid Electric Vehicles Concept of Hybrid Electric Drive Trains Architectures of Hybrid Electric Drive Trains Electric Propulsion Systems DC Motor Drives Induction Motor Drives Permanent Magnetic BLDC Motor Drives SRM Drives Design Principle of Series (Electrical Coupling) Hybrid Electric Drive Train Operation Patterns Control Strategies Design Principles of a Series (Electrical Coupling) Hybrid Drive Train Design Example Parallel (Mechanically Coupled) Hybrid Electric Drive Train Design Drive Train Configuration and Design Objectives Control Strategies Parametric Design of a Drive Train Simulations Design and Control Methodology of Series-Parallel (Torque and Speed Coupling) Hybrid Drive Train Drive Train Configuration Drive Train Control Methodology Drive Train Parameters Design Simulation of an Example Vehicle Design and Control Principles of Plug-In Hybrid Electric Vehicles Statistics of Daily Driving Distance Energy Management Strategy Energy Storage Design Mild Hybrid Electric Drive Train Design Energy Consumed in Braking and Transmission Parallel Mild Hybrid Electric Drive Train Series-Parallel Mild Hybrid Electric Drive Train Peaking Power Sources and Energy Storages Electrochemical Batteries Ultracapacitors Ultra-High-Speed Flywheels Hybridization of Energy Storages Fundamentals of Regenerative Breaking Braking Energy Consumed in Urban Driving Braking Energy versus Vehicle Speed Braking Energy versus Braking Power Braking Power versus Vehicle Speed Braking Energy versus Vehicle Deceleration Rate Braking Energy on Front and Rear Axles Brake System of EV, HEV, and FCV Fuel Cells Operating Principles of Fuel Cells Electrode Potential and Current-Voltage Curve Fuel and Oxidant Consumption Fuel Cell System Characteristics Fuel Cell Technologies Fuel Supply Non-Hydrogen Fuel Cells Fuel Cell Hybrid Electric Drive Train Design Configuration Control Strategy Parametric Design Design Example Design of Series Hybrid Drive Train for Off-Road Vehicles Motion Resistance Tracked Series Hybrid Vehicle Drive Train Architecture Parametric Design of the Drive Train Engine/Generator Power Design Power and Energy Design of Energy Storage Appendices Index

read more

Citations
More filters
Journal ArticleDOI

A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications

TL;DR: Comprehensive simulation results are presented in order to exemplify the key features of the model and analyze its output under specific highly aggressive driving cycles for road gradients ranging from −6% to 6%, in support of its usability as a practical solution for estimating the energy consumption in EV routing applications.
Journal ArticleDOI

Torque blending and wheel slip control in EVs with in-wheel motors

TL;DR: In this paper, the anti-lock braking system (ABS) is designed for in-wheel electric vehicles, which is composed of a tyre slip controller, a wheel torque allocator and a braking supervisor.
Journal ArticleDOI

Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles

TL;DR: The state-of-the-art in unidirectional non-isolated DC-DC Multistage Power Converter (MPC) topologies for FC-VPT application is described and the suitability for different vehicular applications is stated.
Journal ArticleDOI

Power-Based Optimal Longitudinal Control for a Connected Eco-Driving System

TL;DR: A power-based longitudinal control algorithm for a connected eco-driving system, which takes into account the vehicle's brake specific fuel consumption or BSFC map, roadway grade, and other constraints in the calculation of an optimal speed profile in terms of energy savings and emissions reduction.
Journal ArticleDOI

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle

TL;DR: In this paper, an energy management method for a power-split plug-in hybrid electric vehicle (PHEV) is proposed, where a series of quadratic equations are employed to approximate the vehicle's fuel-rate, using battery current as the input.