scispace - formally typeset
Open AccessJournal ArticleDOI

Modification of graphene properties due to electron-beam irradiation

Desalegne Teweldebrhan, +1 more
- 06 Jan 2009 - 
- Vol. 94, Iss: 1, pp 013101
TLDR
In this paper, the micro-Raman investigation of changes in the single and bilayer graphene crystal lattice induced by low and medium energy electron-beam irradiation (5-20 keV) was conducted.
Abstract
The authors report micro-Raman investigation of changes in the single and bilayer graphene crystal lattice induced by the low and medium energy electron-beam irradiation (5–20 keV). It was found that the radiation exposures result in the appearance of the strong disorder D band around 1345 cm−1, indicating damage to the lattice. The D and G peak evolution with increasing radiation dose follows the amorphization trajectory, which suggests graphene’s transformation to the nanocrystalline and then to amorphous form. The results have important implications for graphene characterization and device fabrication, which rely on the electron microscopy and focused ion beam processing.

read more

Citations
More filters
Journal ArticleDOI

Thermal properties of graphene and nanostructured carbon materials

TL;DR: The thermal properties of carbon materials are reviewed, focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder, with special attention given to the unusual size dependence of heat conduction in two-dimensional crystals.
Journal ArticleDOI

Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

TL;DR: In this paper, the authors review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder.
Journal ArticleDOI

Quantifying defects in graphene via Raman spectroscopy at different excitation energies

TL;DR: It is found that the ratio between the D and G peak intensities, for a given defect density, strongly depends on the laser excitation energy, and a simple equation for the determination of the point defect density in graphene via Raman spectroscopy is presented.
Journal ArticleDOI

Quantifying defects in graphene via Raman spectroscopy at different excitation energies.

TL;DR: In this paper, a Raman study of Ar+-bombarded graphene samples with increasing ion doses was conducted and it was shown that the ratio between the D and G peak intensities strongly depends on the laser excitation energy.
Journal ArticleDOI

Quantifying ion-induced defects and Raman relaxation length in graphene

TL;DR: In this paper, the evolution of the intensity ratio between the G band (1585 cm−1) and the disorder-induced D band (1345 cm −1) with ion dose is determined, providing a spectroscopy-based method to quantify the density of defects in graphene.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Interpretation of Raman spectra of disordered and amorphous carbon

TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Related Papers (5)