scispace - formally typeset
Journal ArticleDOI

NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting

TLDR
The growth of NiSe nanowire film on nickel foam (NiSe/NF) in situ by hydrothermal treatment of NF using NaHSe as Se source is presented.
Abstract
Active and stable electrocatalysts made from earth-abundant elements are key to water splitting for hydrogen production through electrolysis. The growth of NiSe nanowire film on nickel foam (NiSe/NF) insitu by hydrothermal treatment of NF using NaHSe as Se source is presented. When used as a 3D oxygen evolution electrode, the NiSe/NF exhibits high activity with an overpotential of 270mV required to achieve 20mAcm(-2) and strong durability in 1.0M KOH, and the NiOOH species formed at the NiSe surface serves as the actual catalytic site. The system is also highly efficient for catalyzing the hydrogen evolution reaction in basic media. This bifunctional electrode enables a high-performance alkaline water electrolyzer with 10mAcm(-2) at a cell voltage of 1.63V.

read more

Citations
More filters
Journal ArticleDOI

Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting

TL;DR: Current progress in this field is summarized here, especially highlighting several important bifunctional catalysts, and various approaches to improve or optimize the electrocatalysts are introduced.
Journal ArticleDOI

Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review

TL;DR: In this article, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct, which is essential to ensure higher life cycle and less decay in cell efficiency.
Journal ArticleDOI

Interface Engineering of MoS2 /Ni3 S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity.

TL;DR: This study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygen-containing intermediates, thus accelerating the overall electrochemical water splitting.
Journal ArticleDOI

Hierarchical NiCo2S4 Nanowire Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions

TL;DR: In this paper, the NiCo2S4 NW/NF arrays on a 3D Ni foam (NF) were used for solar-to-hydrogen (S2H) generation, achieving a hydrogen production current density of 10 mA cm-2 at an overpotential of 260 mV for the oxygen evolution reaction and at 210 mV (versus a reversible hydrogen electrode).
Journal ArticleDOI

Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution

TL;DR: Focusing on self-supported electrodes, the latest advances in their structural design, controllable synthesis, mechanistic understanding, and strategies for performance enhancement are presented.
References
More filters
Journal ArticleDOI

Solar Water Splitting Cells

TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Journal ArticleDOI

Sustainable Hydrogen Production

TL;DR: Identifying and building a sustainable energy system are perhaps two of the most critical issues that today's society must address.
Journal ArticleDOI

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+

TL;DR: A catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions is reported that not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.
Journal ArticleDOI

Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions

TL;DR: This study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications.
Journal ArticleDOI

Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction

TL;DR: The catalytically active Ni2P nanoparticles had among the highest HER activity of any non-noble metal electrocatalyst reported to date, producing H2(g) with nearly quantitative faradaic yield, while also affording stability in aqueous acidic media.
Related Papers (5)