scispace - formally typeset
Journal ArticleDOI

Nitrogen-Doped Porous Carbon Nanosheets as Low-Cost, High-Performance Anode Material for Sodium-Ion Batteries

TLDR
Between the sheets: Nitrogen-doped porous carbon sheets are prepared by chemical activation of polypyrrole-functionalized graphene sheets, which result in high reversible capacity, good cycling stability, and high rate capability in sodium-ion batteries.
Abstract
Between the sheets: Sodium-ion batteries are an attractive, low-cost alternative to lithium-ion batteries. Nitrogen-doped porous carbon sheets are prepared by chemical activation of polypyrrole-functionalized graphene sheets. When using the sheets as anode material in sodium-ion batteries, their unique compositional and structural features result in high reversible capacity, good cycling stability, and high rate capability.

read more

Citations
More filters
Journal ArticleDOI

Recent Advances in Ultrathin Two-Dimensional Nanomaterials

TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Journal ArticleDOI

Sodium-ion batteries: present and future

TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Journal ArticleDOI

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

TL;DR: In this paper, a variety of electrode materials including cathodes and anodes as well as electrolytes for room-temperature stationary sodium-ion batteries are briefly reviewed and compared the difference in storage behavior between Na and Li in their analogous electrodes and summarize the sodium storage mechanisms in available electrode materials.
Journal ArticleDOI

Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life.

TL;DR: The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.
Journal ArticleDOI

Update on Na-based battery materials. A growing research path

TL;DR: In this paper, the feasibility of two novel energy storage systems: Na-aqueous batteries and Na-O2 technology is explored, and new advances on nonaqueous Na-ion systems are summarized.
References
More filters
Journal ArticleDOI

Improved Synthesis of Graphene Oxide

TL;DR: An improved method for the preparation of graphene oxide (GO) is described, finding that excluding the NaNO(3), increasing the amount of KMnO(4), and performing the reaction in a 9:1 mixture of H(2)SO(4)/H(3)PO(4) improves the efficiency of the oxidation process.
Journal ArticleDOI

Carbon-based Supercapacitors Produced by Activation of Graphene

TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Journal ArticleDOI

Graphene-based composites

TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Journal ArticleDOI

Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties

TL;DR: Electrical measurements show that the N-doped graphene exhibits an n-type behavior, indicating substitutional doping can effectively modulate the electrical properties of graphene.
Related Papers (5)