scispace - formally typeset
Journal ArticleDOI

Phosphorescence vs Fluorescence in Cyclometalated Platinum(II) and Iridium(III) Complexes of (Oligo)thienylpyridines

Reads0
Chats0
TLDR
Two newly prepared oligothienylpyridines bind to platinum(II) and iridium(III) as N∧C-coordinating ligands, cyclometallating at position C(4) in the thiophene ring adjacent to the pyridine, leaving a chain of either one or two pendent thiophenes.
Abstract
Two newly prepared oligothienylpyridines, 5-(2-pyridyl)-5'-dodecyl-2,2'-bithiophene, HL(2), and 5-(2-pyridyl)-5''-dodecyl-2,2':5',2''-ter-thiophene, HL(3), bind to platinum(II) and iridium(III) as N∧C-coordinating ligands, cyclometallating at position C(4) in the thiophene ring adjacent to the pyridine, leaving a chain of either one or two pendent thiophenes. The synthesis of complexes of the form [PtL(n)(acac)] and [Ir(L(n))(2)(acac)] (n = 2 or 3) is described. The absorption and luminescence properties of these four new complexes are compared with the behavior of the known complexes [PtL(1)(acac)] and [Ir(L(1))(2)(acac)] {HL(1) = 2-(2-thienyl)pyridine}, and the profound differences in behavior are interpreted with the aid of time-dependent density functional theory (TD-DFT) calculations. Whereas [PtL(1)(acac)] displays solely intense phosphorescence from a triplet state of mixed ππ*/MLCT character, the phosphorescence of [PtL(2)(acac)] and [PtL(3)(acac)] is weak, strongly red shifted, and accompanied by higher-energy fluorescence. TD-DFT reveals that this difference is probably due to the metal character in the lowest-energy excited states being strongly attenuated upon introduction of the additional thienyl rings, such that the spin-orbit coupling effect of the metal in promoting intersystem crossing is reduced. A similar pattern of behavior is observed for the iridium complexes, except that the changeover to dual emission is delayed to the terthiophene complex [Ir(L(3))(2)(acac)], reflecting the higher degree of metal character in the frontier orbitals of the iridium complexes than their platinum counterparts.

read more

Citations
More filters
Journal ArticleDOI

Triplet photosensitizers: from molecular design to applications

TL;DR: This review article summarizes some molecular design rationales for triplet PSs, based on the molecular structural factors that facilitate ISC, and the design of transition metal complexes with large molar absorption coefficients in the visible spectral region and long-lived triplet excited states is presented.
Journal ArticleDOI

Near-infrared phosphorescence: materials and applications

TL;DR: This review describes the overall progress made in the past ten years on NIR phosphorescent transition-metal complexes including Cu(I), Cu(II), Cr(III), Re(I, Re-I), Re-III, Ru(II) and Au(I) complexes, with a primary focus on material design complemented with a selection of optical, electronic, sensory, and biologic applications.
Journal ArticleDOI

Ratiometric optical oxygen sensing: a review in respect of material design

TL;DR: This review describes the overall progress made in the past ten years on ratiometric optical ground-state triplet oxygen sensing and offers a critical comparison of various methods reported in the literature and provides a development blueprint for ratiometry optical oxygen sensing.
Journal ArticleDOI

Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: from molecular design to applications

TL;DR: Transition metal complexes of Ru(II), Pt(II) and Ir(III) with strong absorption of visible light and long-lived T1 excited states were summarized in this article.
Journal ArticleDOI

Feeling blue? Blue phosphors for OLEDs

TL;DR: In this article, the authors report on the advances of light emitting materials, the core of OLEDs, and their future perspectives and highlight the importance of the interplay between chemistry and photophysics en route to true blue phosphors.
References
More filters
Journal ArticleDOI

Density‐functional thermochemistry. III. The role of exact exchange

TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Journal ArticleDOI

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

TL;DR: Numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, show that density-functional formulas for the correlation energy and correlation potential give correlation energies within a few percent.
Journal ArticleDOI

Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy

TL;DR: A large set of more than 300 molecules representing all elements-except lanthanides-in their common oxidation states was used to assess the quality of the bases all across the periodic table, and recommendations are given which type of basis set is used best for a certain level of theory and a desired quality of results.
Journal ArticleDOI

Fully optimized contracted Gaussian basis sets for atoms Li to Kr

TL;DR: In this article, various contracted Gaussian basis sets for atoms up to Kr are presented which have been determined by optimizing atomic self-consistent field ground state energies with respect to all basis set parameters, i.e., orbital exponents and contraction coefficients.
Journal ArticleDOI

COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient

TL;DR: In this paper, an algorithm for the accurate calculation of dielectric screening effects in solvents is presented, which leads to rather simple expressions for the screening energy and its analytic gradient with respect to the solute coordinates.
Related Papers (5)