scispace - formally typeset
Open AccessJournal ArticleDOI

Planck 2013 results. XVI. Cosmological parameters

Peter A. R. Ade, +262 more
Reads0
Chats0
TLDR
In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Abstract
We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.

read more

Citations
More filters
Journal ArticleDOI

Measuring the speed of light with ultra-compact radio quasars

TL;DR: In this article, a 2.29 GHz VLBI all-sky survey of 613 milliarcsecond ultra-compact radio sources with 0.0035
Journal ArticleDOI

Theory for baryon number and dark matter at the LHC

TL;DR: In this paper, the authors investigate the possibility to test a simple theory for spontaneous baryon number violation at the Large Hadron Collider and point out an upper bound on the symmetry breaking scale using the relic density constraints, which tells us that this model can be tested or ruled out at current or future collider experiments.
Journal ArticleDOI

The Abacus Cosmos: A Suite of Cosmological N-body Simulations

TL;DR: In this article, the authors proposed a method to solve the problem of energy-efficient wireless sensor networks by using the AST-1313285, AST-1228509, AST -1312699 and U.S. Department of Energy (DE-SC0013718) codes.
Journal ArticleDOI

Modeling the neutral hydrogen distribution in the post-reionization Universe: intensity mapping

Abstract: We model the distribution of neutral hydrogen (HI) in the post-reionization era and investigate its detectability in 21 cm intensity mapping with future radio telescopes like the Square Kilometer array (SKA). We rely on high resolution hydrodynamical N-body simulations that have a state-of-the-art treatment of the low density photoionized gas in the inter-galactic medium (IGM). The HI is assigned a-posteriori to the gas particles following two different approaches: a halo-based method in which HI is assigned only to gas particles residing within dark matter halos; a particle-based method that assigns HI to all gas particles using a prescription based on the physical properties of the particles. The HI statistical properties are then compared to the observational properties of Damped Lyman-α Absorbers (DLAs) and of lower column density systems and reasonable good agreement is found for all the cases. Among the halo-based method, we further consider two different schemes that aim at reproducing the observed properties of DLAs by distributing HI inside halos: one of this results in a much higher bias for DLAs, in agreement with recent observations, which boosts the 21 cm power spectrum by a factor ~ 4 with respect to the other recipe. Furthermore, we quantify the contribution of HI in the diffuse IGM to both ΩHI and the HI power spectrum finding to be subdominant in both cases. We compute the 21 cm power spectrum from the simulated HI distribution and calculate the expected signal for both SKA1-mid and SKA1-low configurations at 2.4 ≤ z ≤ 4. We find that SKA will be able to detect the 21 cm power spectrum, in the non-linear regime, up to k ~ 1 h/Mpc for SKA1-mid and k ~ 5 h/Mpc for SKA1-low with 100 hours of observations. We also investigate the perspective of imaging the HI distribution. Our findings indicate that SKA1-low could detect the most massive HI peaks with a signal to noise ratio (SNR) higher than 5 for an observation time of about 1000 hours at z = 4, for a synthesized beam width of 2'. Detection at redshifts z≥2.4 with SKA1-mid would instead require a much longer observation time to achieve a comparable SNR level.
References
More filters
Journal ArticleDOI

Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation

TL;DR: In this paper, the authors show that the tensor-to-scalar ratio r 1 is disfavored regardless of r. They provide a set of "WMAP distance priors, to test a variety of dark energy models.
Journal ArticleDOI

The Seventh Data Release of the Sloan Digital Sky Survey

TL;DR: SDSS-II as mentioned in this paper is the last data set of the Sloan Digital Sky Survey and contains 357 million distinct objects, including 930,000 galaxies, 120,000 quasars, and 460,000 stars.
Journal ArticleDOI

Cosmological parameters from CMB and other data: A Monte Carlo approach

Antony Lewis, +1 more
- 25 Nov 2002 - 
TL;DR: In this paper, a fast Markov chain Monte Carlo exploration of cosmological parameter space is presented, which combines data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae type Ia and big-bang nucleosynthesis.
Related Papers (5)

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more