scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cosmology and Astroparticle Physics in 2014"


Journal ArticleDOI
TL;DR: This article measured the large-scale cross-correlation of quasars with the Lyα forest absorption, using over 164,000 quaars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey.
Abstract: Author(s): Font-Ribera, A; Kirkby, D; Busca, N; Miralda-Escude, J; Ross, NP; Slosar, A; Rich, J; Aubourg, E; Bailey, S; Bhardwaj, V; Bautista, J; Beutler, F; Bizyaev, D; Blomqvist, M; Brewington, H; Brinkmann, J; Brownstein, JR; Carithers, B; Dawson, KS; Delubac, T; Ebelke, G; Eisenstein, DJ; Ge, J; Kinemuchi, K; Lee, KG; Malanushenko, V; Malanushenko, E; Marchante, M; Margala, D; Muna, D; Myers, AD; Noterdaeme, P; Oravetz, D; Palanque-Delabrouille, N; Pâris, I; Petitjean, P; Pieri, MM; Rossi, G; Schneider, DP; Simmons, A; Viel, M; Yeche, C; York, DG | Abstract: We measure the large-scale cross-correlation of quasars with the Lyα forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight c/(H(z = 2.36)rs) = 9.0±0.3 and across the line of sight DA (z = 2.36)/rs = 10.8±0.4, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data (rs = 147.49 Mpc), we can translate these results to a measurement of the Hubble parameter of H(z = 2.36) = 226±8 km s -1 Mpc-1 and of the angular diameter distance of D A (z = 2.36) = 1590±60 Mpc. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.©2014 IOP Publishing Ltd and Sissa Medialab srl.

463 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a turnkey solution, ready for implementation in numerical codes, for the study of linear structure formation in general scalar-tensor models involving a single universally coupled scalar field, and show that the totality of cosmological information on the gravitational sector can be compressed into five independent and arbitrary functions of time only and one constant.
Abstract: We present a turnkey solution, ready for implementation in numerical codes, for the study of linear structure formation in general scalar-tensor models involving a single universally coupled scalar field. We show that the totality of cosmological information on the gravitational sector can be compressed — without any redundancy — into five independent and arbitrary functions of time only and one constant. These describe physical properties of the universe: the observable background expansion history, fractional matter density today, and four functions of time describing the properties of the dark energy. We show that two of those dark-energy property functions control the existence of anisotropic stress, the other two — dark-energy clustering, both of which are can be scale-dependent. All these properties can in principle be measured, but no information on the underlying theory of acceleration beyond this can be obtained. We present a translation between popular models of late-time acceleration (e.g. perfect fluids, f(R), kinetic gravity braiding, galileons), as well as the effective field theory framework, and our formulation. In this way, implementing this formulation numerically would give a single tool which could consistently test the majority of models of late-time acceleration heretofore proposed.

348 citations


Journal ArticleDOI
TL;DR: In this article, the Lagrangian of a vector field with derivative self-interactions with a priori arbitrary coefficients was considered and the Horndeski Proca action with second order equations of motion on curved space-times was analyzed.
Abstract: We consider the Lagrangian of a vector field with derivative self-interactions with a priori arbitrary coefficients. Starting with a flat space-time we show that for a specialchoice of the coefficients of the self-interactions the ghost-like pathologies disappear. This constitutes the Galileon-type generalization of the Proca action with only three propagating physical degrees of freedom. The longitudinal mode of the vector field is associated to the usual Galileon interactions for a specific choice of the overall functions. In difference to a scalar Galileon theory, the generalized Proca field has more free parameters. We then extend this analysis to a curved background. The resulting theory is the Horndeski Proca action with second order equations of motion on curved space-times.

346 citations


Journal ArticleDOI
TL;DR: In this article, the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels are presented.
Abstract: We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.

326 citations


Journal ArticleDOI
TL;DR: In this paper, the authors consider minimal extensions of the Mimetic Dark Matter and show that by introducing a potential for the mimetic non-dynamical scalar field, they can mimic nearly any gravitational properties of the normal matter.
Abstract: We consider minimal extensions of the recently proposed Mimetic Dark Matter and show that by introducing a potential for the mimetic non-dynamical scalar field we can mimic nearly any gravitational properties of the normal matter. In particular, the mimetic matter can provide us with inflaton, quintessence and even can lead to a bouncing nonsingular universe. We also investigate the behaviour of cosmological perturbations due to a mimetic matter. We demonstrate that simple mimetic inflation can produce red-tilted scalar perturbations which are largely enhanced over gravity waves.

294 citations


Journal ArticleDOI
TL;DR: In this article, the authors present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, dark energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation.
Abstract: We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematicmore » errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.« less

289 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived the expected intensity of the diffuse high-energy neutrinos from star-forming galaxies including normal and starburst galaxies, including those with active galactic nuclei and galaxy mergers, and showed that the spectra harder than E-2.15 are likely to be excluded by the IceCube data.
Abstract: Star-forming galaxies have been predicted to contribute considerably to the diffuse gamma-ray background as they are guaranteed reservoirs of cosmic rays. Assuming that the hadronic interactions responsible for high-energy gamma rays also produce high-energy neutrinos and that (100) PeV cosmic rays can be produced and confined in starburst galaxies, we here discuss the possibility that star-forming galaxies are also the main sources of the high-energy neutrinos observed by the IceCube experiment. First, we compute the diffuse gamma-ray background from star-forming galaxies, adopting the latest Herschel PEP/HerMES luminosity function and relying on the correlation between the gamma-ray and infrared luminosities reported by Fermi observations. Then we derive the expected intensity of the diffuse high-energy neutrinos from star-forming galaxies including normal and starburst galaxies. Our results indicate that starbursts, including those with active galactic nuclei and galaxy mergers, could be the main sources of the high-energy neutrinos observed by the IceCube experiment. We find that assuming a cosmic-ray spectral index of 2.1–2.2 for all starburst-like galaxies, our predictions can be consistent with both the Fermi and IceCube data, but larger indices readily fail to explain the observed diffuse neutrino flux. Taking the starburst high-energy spectral index as free parameter, and extrapolating from GeV to PeV energies, we find that the spectra harder than E-2.15 are likely to be excluded by the IceCube data, which can be more constraining than the Fermi data for this population.

263 citations


Journal ArticleDOI
TL;DR: In this paper, the mass fraction of primordial black holes (PBHs) formed from primordial perturbations is calculated using the comoving curvature perturbation.
Abstract: We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not - this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k2. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes.

246 citations


Journal ArticleDOI
TL;DR: In this article, a Lagrangian-space Effective Field Theory (LEFT) formalism is introduced for the study of cosmological large scale structures, which is naturally formulated as an effective field theory of extended objects.
Abstract: We introduce a Lagrangian-space Effective Field Theory (LEFT) formalism for the study of cosmological large scale structures. Unlike the previous Eulerian-space construction, it is naturally formulated as an effective field theory of extended objects in Lagrangian space. In LEFT the resulting finite size effects are described using a multipole expansion parameterized by a set of time dependent coefficients and organized in powers of the ratio of the wavenumber of interest k over the non-linear scale k{sub NL}. The multipoles encode the effects of the short distance modes on the long-wavelength universe and absorb UV divergences when present. There are no IR divergences in LEFT. Some of the parameters that control the perturbative approach are not assumed to be small and can be automatically resummed. We present an illustrative one-loop calculation for a power law universe. We describe the dynamics both at the level of the equations of motion and through an action formalism.

244 citations


Journal ArticleDOI
TL;DR: In this article, the authors compute the Bayesian evidence and complexity of 193 slow-roll single-field models of inflation using the Planck 2013 Cosmic Microwave Background data, with the aim of establishing which models are favoured from a Bayesian perspective.
Abstract: We compute the Bayesian evidence and complexity of 193 slow-roll single-field models of inflation using the Planck 2013 Cosmic Microwave Background data, with the aim of establishing which models are favoured from a Bayesian perspective. Our calculations employ a new numerical pipeline interfacing an inflationary effective likelihood with the slow-roll library ASPIC and the nested sampling algorithm MultiNest. The models considered represent a complete and systematic scan of the entire landscape of inflationary scenarios proposed so far. Our analysis singles out the most probable models (from an Occam's razor point of view) that are compatible with Planck data, while ruling out with very strong evidence 34% of the models considered. We identify 26% of the models that are favoured by the Bayesian evidence, corresponding to 15 different potential shapes. If the Bayesian complexity is included in the analysis, only 9% of the models are preferred, corresponding to only 9 different potential shapes. These shapes are all of the plateau type.

233 citations


Journal ArticleDOI
TL;DR: In this article, BICEP2 has been used to detect a degree-scale B-mode polarization pattern in the Cosmic Microwave Background (CMB) and has interpreted the measurement as evidence for primordial gravitational waves.
Abstract: BICEP2 has reported the detection of a degree-scale B-mode polarization pattern in the Cosmic Microwave Background (CMB) and has interpreted the measurement as evidence for primordial gravitational waves. Motivated by the profound importance of the discovery of gravitational waves from the early Universe, we examine to what extent a combination of Galactic foregrounds and lensed E-modes could be responsible for the signal. We reanalyze the BICEP2 results and show that the 100 ×150 GHz and 150 ×150 GHz data are consistent with a cosmology with r=0.2 and negligible foregrounds, but also with a cosmology with r=0 and a significant dust polarization signal. We give independent estimates of the dust polarization signal in the BICEP2 region using a number of different approaches: (1) data-driven models based on Planck 353 GHz intensity, polarization fractions inferred from the same Planck data used by the BICEP2 team but corrected for CMB and CIB contributions, and polarization angles from starlight polarization data or the Planck sky model; (2) the same set of pre-Planck models used by the BICEP2 team but taking into account the higher polarization fractions observed in the CMB- and CIB-corrected map; (3) a measurement of neutral hydrogen gas column density NHI in the BICEP2 region combined with an extrapolation of a relation between HI column density and dust polarization derived by Planck; and (4) a dust polarization map based on digitized Planck data, which we only use as a final cross-check. While these approaches are consistent with each other, the expected amplitude of the dust polarization power spectrum remains uncertain by about a factor of three. The lower end of the prediction leaves room for a primordial contribution, but at the higher end the dust in combination with the standard CMB lensing signal could account for the BICEP2 observations, without requiring the existence of primordial gravitational waves. By measuring the cross-correlations between the pre-Planck templates used in the BICEP2 analysis and between different versions of a data-based template, we emphasize that cross-correlations between models are very sensitive to noise in the polarization angles and that measured cross-correlations are likely underestimates of the contribution of foregrounds to the map. These results suggest that BICEP1 and BICEP2 data alone cannot distinguish between foregrounds and a primordial gravitational wave signal, and that future Keck Array observations at 100 GHz and Planck observations at higher frequencies will be crucial to determine whether the signal is of primordial origin.

Journal ArticleDOI
Sigurd Naess1, Matthew Hasselfield2, Matthew Hasselfield3, Jeff McMahon4, Michael D. Niemack5, Graeme E. Addison2, Peter A. R. Ade6, Rupert Allison1, Mandana Amiri2, Nick Battaglia7, James A. Beall8, Francesco De Bernardis5, J. Richard Bond9, Joseph W. Britton8, Erminia Calabrese1, Hsiao-Mei Cho8, Kevin Coughlin4, Devin Crichton10, Sudeep Das11, Rahul Datta4, Mark J. Devlin12, Simon Dicker12, Joanna Dunkley1, Rolando Dünner13, Joseph W. Fowler8, Anna E. Fox8, Patricio A. Gallardo5, Patricio A. Gallardo13, Emily Grace3, Megan Gralla10, Amir Hajian9, Mark Halpern2, Shawn W. Henderson5, J. Colin Hill3, Gene C. Hilton8, Matt Hilton14, Adam D. Hincks2, Renée Hlozek3, Patty Ho3, Johannes Hubmayr8, Kevin M. Huffenberger15, John P. Hughes16, Leopoldo Infante13, Kent D. Irwin17, Rebecca Jackson4, Rebecca Jackson18, Simon Muya Kasanda14, Jacob Klein12, Brian J. Koopman5, Arthur Kosowsky19, Dale Li8, Thibaut Louis1, M. Lungu12, Mathew S. Madhavacheril20, Tobias A. Marriage10, Loïc Maurin13, Felipe Menanteau21, Kavilan Moodley14, Charles Munson4, Laura Newburgh3, John P. Nibarger8, Michael R. Nolta9, Lyman A. Page3, Christine G. Pappas3, Bruce Partridge22, Felipe Rojas13, Benjamin L. Schmitt12, Neelima Sehgal20, Blake D. Sherwin23, Jon Sievers9, Jon Sievers14, Sara M. Simon3, David N. Spergel3, Suzanne T. Staggs3, Eric R. Switzer9, Eric R. Switzer24, Robert Thornton25, Robert Thornton12, Hy Trac7, Carole Tucker6, Masao Uehara, Alexander van Engelen20, Jonathan T. Ward12, Edward J. Wollack24 
TL;DR: In this paper, the Atacama Cosmology Telescope Polarimeter (ACTPol) was used for measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz.
Abstract: We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of 1.3'. The map noise levels in the four regions are between 11 and 17 μK-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range 200 < l < 3000, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at l < 9000, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than 2.4 μ 2 at l = 3000 at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of 150.7o ± 0.6o when smoothed with a 5' Gaussian beam.

Journal ArticleDOI
TL;DR: In this paper, the authors reconstruct F(R) gravity models with exponential and power-law forms of the scale factor in which bounce cosmology can be realized, and explore the stability of the reconstructed models with analyzing the perturbations from the background solutions.
Abstract: We reconstruct F(R) gravity models with exponential and power-law forms of the scale factor in which bounce cosmology can be realized. We explore the stability of the reconstructed models with analyzing the perturbations from the background solutions. Furthermore, we study an F(R) gravity model with a sum of exponentials form of the scale factor, where the bounce in the early universe as well as the late-time cosmic acceleration can be realized in a unified manner. As a result, we build a second order polynomial type model in terms of R and show that it could be stable. Moreover, when the scale factor is expressed by an exponential form, we derive F(R) gravity models of a polynomial type in case of the non-zero spatial curvature and that of a generic type in that of the zero spatial curvature. In addition, for an exponential form of the scale factor, an F(R) bigravity model realizing the bouncing behavior is reconstructed. It is found that in both the physical and reference metrics the bouncing phenomenon can occur, although in general the contraction and expansion rates are different each other.

Journal ArticleDOI
TL;DR: In this paper, the thermalization of a hidden sector consisting of minicharged fermions (MCPs) and massless hidden photons in the early Universe was studied. But the authors focused on the strong and weakly coupled regime for a wide range of model parameters.
Abstract: We compute the thermalization of a hidden sector consisting of minicharged fermions (MCPs) and massless hidden photons in the early Universe. The precise measurement of the anisotropies of the cosmic microwave background (CMB) by Planck and the relic abundance of light nuclei produced during big bang nucleosynthesis (BBN) constrain the amount of dark radiation of this hidden sector through the effective number of neutrino species, Neff. This study presents novel and accurate predictions of dark radiation in the strongly and weakly coupled regime for a wide range of model parameters. We give the value of Neff for MCP masses between ~ 100 keV and 10 GeV and minicharges in the range 10?11?1. Our results can be used to constrain MCPs with the current data and they are also a valuable indicator for future experimental searches, should the hint for dark radiation manifest itself in the next release of Planck's data.

Journal ArticleDOI
TL;DR: In this article, it was shown that the correlation functions of any single-field cosmological model with constant growing-modes are constrained by an infinite number of novel consistency relations.
Abstract: We show that the correlation functions of any single-field cosmological model with constant growing-modes are constrained by an infinite number of novel consistency relations, which relate N+1-point correlation functions with a soft-momentum scalar or tensor mode to a symmetry transformation on N-point correlation functions of hard-momentum modes. We derive these consistency relations from Ward identities for an infinite tower of non-linearly realized global symmetries governing scalar and tensor perturbations. These symmetries can be labeled by an integer n. At each order n, the consistency relations constrain — completely for n = 0,1, and partially for n ≥ 2 — the q{sup n} behavior of the soft limits. The identities at n = 0 recover Maldacena's original consistency relations for a soft scalar and tensor mode, n = 1 gives the recently-discovered conformal consistency relations, and the identities for n ≥ 2 are new. As a check, we verify directly that the n = 2 identity is satisfied by known correlation functions in slow-roll inflation.

Journal ArticleDOI
TL;DR: In this paper, the authors used a large suite of N-body simulations to study departures from universality in halo abundances and clustering in cosmologies with non-vanishing neutrino masses.
Abstract: We use a large suite of N-body simulations to study departures from universality in halo abundances and clustering in cosmologies with non-vanishing neutrino masses. To this end, we study how the halo mass function and halo bias factors depend on the scaling variable σ2(M,z), the variance of the initial matter fluctuation field, rather than on halo mass M and redshift z themselves. We show that using the variance of the cold dark matter rather than the total mass field, i.e., σ2cdm(M,z) rather than σ2m(M,z), yields more universal results. Analysis of halo bias yields similar conclusions: when large-scale halo bias is defined with respect to the cold dark matter power spectrum, the result is both more universal, and less scale- or k-dependent. These results are used extensively in Papers I and III of this series.

Journal ArticleDOI
TL;DR: In this article, a suite of large box-size N-body simulations that incorporate massive neutrinos as an extra set of particles, with total masses of 0.15, 0.30, and 0.60 eV, was used to investigate the impact of neutrino masses on the spatial distribution of dark matter haloes and on the distribution of galaxies within the haloes.
Abstract: By using a suite of large box-size N-body simulations that incorporate massive neutrinos as an extra set of particles, with total masses of 0.15, 0.30, and 0.60 eV, we investigate the impact of neutrino masses on the spatial distribution of dark matter haloes and on the distribution of galaxies within the haloes. We compute the bias between the spatial distribution of dark matter haloes and the overall matter and cold dark matter distributions using statistical tools such as the power spectrum and the two-point correlation function. Overall we find a scale-dependent bias on large scales for the cosmologies with massive neutrinos. In particular, we find that the bias decreases with the scale, being this effect more important for higher neutrino masses and at high redshift. However, our results indicate that the scale-dependence in the bias is reduced if the latter is computed with respect to the cold dark matter distribution only. We find that the value of the bias on large scales is reasonably well reproduced by the Tinker fitting formula once the linear cold dark matter power spectrum is used, instead of the total matter power spectrum. We also investigate whether scale-dependent bias really comes from purely neutrino's effect or from nonlinear gravitational collapse of haloes. For this purpose, we address the Ων-σ8 degeneracy and find that such degeneracy is not perfect, implying that neutrinos imprint a slight scale dependence on the large-scale bias. Finally, by using a simple halo occupation distribution (HOD) model, we investigate the impact of massive neutrinos on the distribution of galaxies within dark matter haloes. We use the main galaxy sample in the Sloan Digital Sky Survey (SDSS) II Data Release 7 to investigate if the small-scale galaxy clustering alone can be used to discriminate among different cosmological models with different neutrino masses. Our results suggest that different choices of the HOD parameters can reproduce the observational measurements relatively well, and we quantify the difference between the values of the HOD parameters between massless and massive neutrino cosmologies.

Journal ArticleDOI
Philippe André, Carlo Baccigalupi1, A. J. Banday2, A. J. Banday3  +165 moreInstitutions (53)
TL;DR: Polarized Radiation Imaging and Spectroscopy Mission (PRISM) as mentioned in this paper was proposed to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume.
Abstract: PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) effect, detecting approximately 106 clusters extending to large redshift, including a characterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ effect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the diffuse CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during inflation and from gravitational lensing, as well as the ultimate search for primordial non-Gaussianity using CMB polarization, which is less contaminated by foregrounds on small scales than the temperature anisotropies; (4) a search for distortions from a perfect blackbody spectrum, which include some nearly certain signals and others that are more speculative but more informative; and (5) a study of the role of the magnetic field in star formation and its interaction with other components of the interstellar medium of our Galaxy. These are but a few of the highlights presented here along with a description of the proposed instrument.

Journal ArticleDOI
TL;DR: In this paper, the authors performed an updated analysis on the Inert Higgs Doublet Model (IHDM) and found that the most favoured parameter space for IHDM corresponds to dark matter with a mass less than 100 GeV or so.
Abstract: In light of the recent discovery by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) of a Higgs-like particle with a narrow mass range of 125–126 GeV, we perform an updated analysis on one of the popular scalar dark matter models, the Inert Higgs Doublet Model (IHDM). We take into account in our likelihood analysis of various experimental constraints, including recent relic density measurement, dark matter direct and indirect detection constraints as well as the latest collider constraints on the invisible decay width of the Higgs boson and monojet search at the LHC. It is shown that if the invisible decay of the standard model Higgs boson is open, LHC as well as direct detection experiments like LUX and XENON100 could put stringent limits on the Higgs boson couplings to dark matter. We find that the most favoured parameter space for IHDM corresponds to dark matter with a mass less than 100 GeV or so. In particular, the best-fit points are at the dark matter mass around 70 GeV where the invisible Higgs decay to dark matter is closed. Scalar dark matter in the higher mass range of 0.5–4 TeV is also explored in our study. Projectedmore » sensitivities for the future experiments of monojet at LHC-14, XENON1T and AMS-02 one year antiproton flux are shown to put further constraints on the existing parameter space of IHDM.« less

Journal ArticleDOI
TL;DR: In this paper, the authors show that the quantum criticality of graviton Bose-gas to Bose liquid transition can be modeled as a composite of N soft constituent gravitons and derive an absolute upper bound on the number of e-foldings beyond which neither de Sitter nor inflationary universe can be approximated by a semi-classical metric.
Abstract: Gravitational backgrounds, such as black holes, AdS, de Sitter and inflationary universes, should be viewed as composite of N soft constituent gravitons. It then follows that such systems are close to quantum criticality of graviton Bose-gas to Bose-liquid transition. Generic properties of the ordinary metric description, including geodesic motion or particle-creation in the background metric, emerge as the large-N limit of quantum scattering of constituent longitudinal gravitons. We show that this picture correctly accounts for physics of large and small black holes in AdS, as well as reproduces well-known inflationary predictions for cosmological parameters. However, it anticipates new effects not captured by the standard semi-classical treatment. In particular, we predict observable corrections that are sensitive to the inflationary history way beyond last 60 e-foldings. We derive an absolute upper bound on the number of e-foldings, beyond which neither de Sitter nor inflationary Universe can be approximated by a semi-classical metric. However, they could in principle persist in a new type of quantum eternity state. We discuss implications of this phenomenon for the cosmological constant problem.

Journal ArticleDOI
TL;DR: In this paper, a simple model, based on spherical collapse, was presented to accurately predict the location of the splashback without any free parameters, which is produced by splashback material on its first apocentric passage after accretion.
Abstract: Recent work has shown that density profiles in the outskirts of dark matter halos can become extremely steep over a narrow range of radius. This behavior is produced by splashback material on its first apocentric passage after accretion. We show that the location of this splashback feature may be understood quite simply, from first principles. We present a simple model, based on spherical collapse, that accurately predicts the location of splashback without any free parameters. The important quantities that determine the splashback radius are accretion rate and redshift.

Journal ArticleDOI
TL;DR: In this paper, it was shown that the mass of thermal dark matter annihilating via a long-range interaction is significantly affected by the formation and decay of dark matter bound states in the early universe.
Abstract: We show that the relic abundance of thermal dark matter annihilating via a long-range interaction, is significantly affected by the formation and decay of dark matter bound states in the early universe, if the dark matter mass is above a few TeV . We determine the coupling required to obtain the observed dark matter density, taking into account both the direct 2-to-2 annihilations and the formation of bound states, and provide an analytical fit. We argue that the unitarity limit on the inelastic cross-section is realized only if dark matter annihilates via a long-range interaction, and we determine the upper bound on the mass of thermal-relic dark matter to be about 197 (139) TeV for (non)-self-conjugate dark matter.

Journal ArticleDOI
TL;DR: In this article, the main spectral and angular features of gamma-ray excess can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ∼ 10{sup 52}÷10{sup 53} erg roughly O(10sup 6}) years ago.
Abstract: Several groups have recently claimed evidence for an unaccounted gamma-ray excess over the diffuse backgrounds at few GeV in the Fermi-LAT data in a region around the Galactic Center, consistent with a dark matter annihilation origin. We demonstrate that the main spectral and angular features of this excess can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ∼ 10{sup 52}÷10{sup 53} erg roughly O(10{sup 6}) years ago. We consider this example as a proof of principle that time-dependent phenomena need to be understood and accounted for—together with detailed diffuse foregrounds and unaccounted ''steady state'' astrophysical sources—before any robust inference can be made about dark matter signals at the Galactic Center. In addition, we point out that the timescale suggested by our study, which controls both the energy cutoff and the angular extension of the signal, intriguingly matches (together with the energy budget) what is indirectly inferred by other evidences suggesting a very active Galactic Center in the past, for instance related to intense star formation and accretion phenomena.

Journal ArticleDOI
TL;DR: In this article, an extension of f(T) gravity is proposed, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor.
Abstract: We present an extension of f(T) gravity, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor . The resulting f(T,) theory is a new modified gravity, since it is different from all the existing torsion or curvature based constructions. Applied to a cosmological framework, it leads to interesting phenomenology. In particular, one can obtain a unified description of the initial inflationary phase, the subsequent non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase. Additionally, the effective dark energy sector can be quintessence or phantom-like, or exhibit the phantom-divide crossing during the evolution. Moreover, in the far future the universe results either to a de Sitter exponential expansion, or to eternal power-law accelerated expansions. Finally, a detailed study of the scalar perturbations at the linear level reveals that f(T,) cosmology can be free of ghosts and instabilities for a wide class of ansatzes and model parameters.

Journal ArticleDOI
TL;DR: In this paper, the existence of a scalar singlet particle which never entered thermal equilibrium in the early universe was considered, since it only couples to the Standard Model fields by a small Higgs portal interaction.
Abstract: We propose a new production mechanism for keV sterile neutrino Dark Matter. In our setting, we assume the existence of a scalar singlet particle which never entered thermal equilibrium in the early Universe, since it only couples to the Standard Model fields by a really small Higgs portal interaction. For suitable values of this coupling, the scalar can undergo the so-called freeze-in process, and in this way be efficiently produced in the early Universe. These scalars can then decay into keV sterile neutrinos and produce the correct Dark Matter abundance. While similar settings in which the scalar does enter thermal equilibrium and then freezes out have been studied previously, the mechanism proposed here is new and represents a versatile extension of the known case. We perform a detailed numerical calculation of the DM production using a set of coupled Boltzmann equations, and we illustrate the successful regions in the parameter space. Our production mechanism notably can even work in models where active-sterile mixing is completely absent.

Journal ArticleDOI
TL;DR: In this article, it was shown that Einstein's equations for gravity are generically invariant under ''disformations'' and that the particular subclass when this is not true yields the equations of motion of ''Mimetic Gravity''.
Abstract: In this Note we show that Einstein's equations for gravity are generically invariant under ``disformations''. We also show that the particular subclass when this is not true yields the equations of motion of ``Mimetic Gravity''. Finally we give the ``mimetic'' generalization of the Schwarzschild solution.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a systematic study of renormalization in models of halo biasing and show that Eulerian biasing is only consistent with renormalisation if non-local terms and higher-derivative contributions are included in the biasing model.
Abstract: This paper provides a systematic study of renormalization in models of halo biasing. Building on work of McDonald, we show that Eulerian biasing is only consistent with renormalization if non-local terms and higher-derivative contributions are included in the biasing model. We explicitly determine the complete list of required bias parameters for Gaussian initial conditions, up to quartic order in the dark matter density contrast and at leading order in derivatives. At quadratic order, this means including the gravitational tidal tensor, while at cubic order the velocity potential appears as an independent degree of freedom. Our study naturally leads to an effective theory of biasing in which the halo density is written as a double expansion in fluctuations and spatial derivatives. We show that the bias expansion can be organized in terms of Galileon operators which aren't renormalized at leading order in derivatives. Finally, we discuss how the renormalized bias parameters impact the statistics of halos.

Journal ArticleDOI
TL;DR: In this paper, the elastic scattering cross-section of dark matter and neutrinos was studied using the latest cosmological data from Planck and large-scale structure experiments.
Abstract: We present a new study on the elastic scattering cross section of dark matter (DM) and neutrinos using the latest cosmological data from Planck and large-scale structure experiments. We find that the strongest constraints are set by the Lyman-α forest, giving σDM−ν 10−33(mDM/GeV) cm2 if the cross section is constant and a present-day value of σDM−ν 10−45(mDM/GeV) cm2 if it scales as the temperature squared. These are the most robust limits on DM-neutrino interactions to date, demonstrating that one can use the distribution of matter in the Universe to probe dark (``invisible") interactions. Additionally, we show that scenarios involving thermal MeV DM and a constant elastic scattering cross section naturally predict (i) a cut-off in the matter power spectrum at the Lyman-α scale, (ii) Neff ~ 3.5 ± 0.4, (iii) H0 ~ 71 ± 3km s−1Mpc−1 and (iv) the possible generation of neutrino masses.

Journal ArticleDOI
TL;DR: In this paper, the Effective Field Theory of Large Scale Structures (EFTofLSS) was used to predict the non-linear power spectrum at redshift zero up to k∼ 0.6 h Mpc{sup −1, requiring just one unknown coefficient that needs to be fit to observations.
Abstract: Large scale structure surveys promise to be the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime of dark matter, where correlation functions are computed in an expansion of the wavenumber k of a mode over the wavenumber associated with the non-linear scale k{sub NL}. Since most of the information is contained at high wavenumbers, it is necessary to compute higher order corrections to correlation functions. After the one-loop correction to the matter power spectrum, we estimate that the next leading one is the two-loop contribution, which we compute here. At this order in k/k{sub NL}, there is only one counterterm in the EFTofLSS that must be included, though this term contributes both at tree-level and in several one-loop diagrams. We also discuss correlation functions involving the velocity and momentum fields. We find that the EFTofLSS prediction at two loops matches to percent accuracy the non-linear matter power spectrum at redshift zero up to k∼ 0.6 h Mpc{sup −1}, requiring just one unknown coefficient that needs to be fit to observations. Given that Standard Perturbation Theory stopsmore » converging at redshift zero at k∼ 0.1 h Mpc{sup −1}, our results demonstrate the possibility of accessing a factor of order 200 more dark matter quasi-linear modes than naively expected. If the remaining observational challenges to accessing these modes can be addressed with similar success, our results show that there is tremendous potential for large scale structure surveys to explore the primordial universe.« less

Journal ArticleDOI
TL;DR: In this article, a kinetic-equation approach was used to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra.
Abstract: We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate Xmax(E) and dispersion σ(Xmax) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ~ E-γ with γ~ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ~ 5Z× 1018 eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ~ E-2.7). In this sense, at the ankle EA≈ 5× 1018 eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.