scispace - formally typeset
Journal ArticleDOI

Polymeric system for dual growth factor delivery

TLDR
This is the first report of a vehicle capable of delivery of multiple angiogenic factors with distinct kinetics, and these results clearly indicate the importance of multiple growth factor action in tissue regeneration and engineering.
Abstract
The development of tissues and organs is typically driven by the action of a number of growth factors. However, efforts to regenerate tissues (e.g., bone, blood vessels) typically rely on the delivery of single factors, and this may partially explain the limited clinical utility of many current approaches. One constraint on delivering appropriate combinations of factors is a lack of delivery vehicles that allow for a localized and controlled delivery of more than a single factor. We report a new polymeric system that allows for the tissue-specific delivery of two or more growth factors, with controlled dose and rate of delivery. The utility of this system was investigated in the context of therapeutic angiogenesis. We now demonstrate that dual delivery of vascular endothelial growth factor (VEGF)-165 and platelet-derived growth factor (PDGF)-BB, each with distinct kinetics, from a single, structural polymer scaffold results in the rapid formation of a mature vascular network. This is the first report of a vehicle capable of delivery of multiple angiogenic factors with distinct kinetics, and these results clearly indicate the importance of multiple growth factor action in tissue regeneration and engineering.

read more

Citations
More filters
Journal ArticleDOI

Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering

TL;DR: Although modern synthetic biomaterials represent oversimplified mimics of natural ECMs lacking the essential natural temporal and spatial complexity, a growing symbiosis of materials engineering and cell biology may ultimately result in synthetic materials that contain the necessary signals to recapitulate developmental processes in tissue- and organ-specific differentiation and morphogenesis.
Journal ArticleDOI

Angiogenesis in health and disease.

TL;DR: Molecular insights into the formation of new blood vessels are being generated at a rapidly increasing pace, offering new therapeutic opportunities that are currently being evaluated.
Journal ArticleDOI

Biodegradable nanoparticles for drug and gene delivery to cells and tissue

TL;DR: Based on the above mechanism, various potential applications of nanoparticles for delivery of therapeutic agents to the cells and tissue are discussed.
PatentDOI

Self-assembly and mineralization of peptide-amphiphile nanofibers

TL;DR: In this paper, pH-induced self-assembly of a peptide-amphiphile was used to make a nanostructured fibrous scaffold reminiscent of extracellular matrix.
Journal ArticleDOI

Molecular regulation of vessel maturation.

TL;DR: The maturation of nascent vasculature, formed by vasculogenesis or angiogenesis, requires recruitment of mural cells, generation of an extracellular matrix and specialization of the vessel wall for structural support and regulation of vessel function.
References
More filters
Journal ArticleDOI

Mechanisms of angiogenesis

TL;DR: Understanding of the molecular basis underlying angiogenesis, particularly from the study of mice lacking some of the signalling systems involved, has greatly improved, and may suggest new approaches for treating conditions such as cancer that depend onAngiogenesis.
Journal ArticleDOI

Mechanisms of angiogenesis and arteriogenesis.

TL;DR: The cellular and molecular mechanisms underlying the formation of endothelium-lined channels and their maturation via recruitment of smooth muscle cells (arteriogenesis) during physiological and pathological conditions are summarized, alongside with possible therapeutic applications.
Journal ArticleDOI

Vascular-specific growth factors and blood vessel formation

TL;DR: New findings in newly discovered vascular growth factors demand re-evaluation of therapeutic efforts aimed at regulating blood vessel growth in ischaemia, cancer and other pathological settings.
Journal Article

Drug delivery and targeting

TL;DR: When a pharmaceutical agent is encapsulated within, or attached to, a polymer or lipid, drug safety and efficacy can be greatly improved and new therapies are possible.
Related Papers (5)