scispace - formally typeset
Journal ArticleDOI

Positioning single atoms with a scanning tunnelling microscope

D. M. Eigler, +1 more
- 01 Apr 1990 - 
- Vol. 344, Iss: 6266, pp 524-526
Reads0
Chats0
TLDR
In this paper, Binnig and Rohrer used the scanning tunnelling microscope (STM) to position individual xenon atoms on a single-crystal nickel surface with atomic pre-cision.
Abstract
SINCE its invention in the early 1980s by Binnig and Rohrer1,2, the scanning tunnelling microscope (STM) has provided images of surfaces and adsorbed atoms and molecules with unprecedented resolution The STM has also been used to modify surfaces, for example by locally pinning molecules to a surface3 and by transfer of an atom from the STM tip to the surface4 Here we report the use of the STM at low temperatures (4 K) to position individual xenon atoms on a single-crystal nickel surface with atomic pre-cision This capacity has allowed us to fabricate rudimentary structures of our own design, atom by atom The processes we describe are in principle applicable to molecules also In view of the device-like characteristics reported for single atoms on surfaces5,6, the possibilities for perhaps the ultimate in device miniaturization are evident

read more

Citations
More filters
Journal ArticleDOI

Building Structures Atom by Atom via Electron Beam Manipulation

TL;DR: In this article, an atomically focused electron beam is used to introduce Si substitutional defects and defect clusters in graphene with spatial control of a few nanometers and enable controlled motion of Si atoms.
Journal ArticleDOI

Contact Micromanipulation—Survey of Strategies

TL;DR: This paper surveys contact micromanipulation strategies that are developed to tackle the microscale-related phenomena in microassembly according to how they take account of adhesion forces.
Journal ArticleDOI

Supramolecular assembly of conjugated polymers: From molecular engineering to solid-state properties

TL;DR: In this article, a joint experimental-theoretical approach, combining scanning probe microscopy characterization of thin deposits and force-field molecular modeling of supramolecular aggregates and adsorbates is presented.
Journal ArticleDOI

Switching the chirality of single adsorbate complexes.

TL;DR: Pumped up: Propene molecules form chiral complexes when adsorbed on a copper surface when inelastically scattered tunneling electrons from the tip of a scanning tunneling microscope induce rotation or diffusion of the adsorbate on the surface.
Journal ArticleDOI

Nonacene Generated by On-Surface Dehydrogenation.

TL;DR: The thermally induced dehydrogenation uncovered the isomerization of intermediate dihydrononacene species, which allowed for their in-depth structural and electronic characterization.
References
More filters
Journal ArticleDOI

Surface studies by scanning tunneling microscopy

TL;DR: In this paper, surface microscopy using vacuum tunneling has been demonstrated for the first time, and topographic pictures of surfaces on an atomic scale have been obtained for CaIrSn 4 and Au.
Journal ArticleDOI

Tunneling through a controllable vacuum gap

TL;DR: In this article, the first successful tunneling experiment with an externally and reproducibly adjustable vacuum gap is reported, based on the exponential dependence of the tunneling resistance on the width of the gap.
Journal ArticleDOI

Atomic-scale surface modifications using a tunnelling microscope

TL;DR: In this paper, an atomic-scale modification of the surface of a nearly perfect germanium crystal, effected by the tungsten tip of a tunnelling microscope, was reported.
Journal ArticleDOI

Negative Differential Resistance on the Atomic Scale: Implications for Atomic Scale Devices

In-Whan Lyo, +1 more
- 22 Sep 1989 - 
TL;DR: scanning tunneling microscopy and scanning tunneling spectroscopy are shown that the current-voltage characteristics of a diode configuration consisting of an STM tip over specific sites of a boron-exposed silicon(111) surface exhibit NDR.
Journal ArticleDOI

Molecular manipulation using a tunnelling microscope

TL;DR: The accomplishment of the smallest yet, purposeful, spatially localized changes in matter, effected on a graphite surface is reported, believing that the changes result from the pinning of individual organic molecules to the graphite.