scispace - formally typeset
Open AccessJournal ArticleDOI

Quantum entanglement

Reads0
Chats0
TLDR
In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract
All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

read more

Citations
More filters
Journal ArticleDOI

Quantum entanglement in condensed matter systems

TL;DR: In this paper, the authors focus on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade.
Journal ArticleDOI

Quantum hyperentanglement and its applications in quantum information processing

TL;DR: A review of the progress achieved so far in the field of hyperentanglement in photon systems and some of its important applications in quantum information processing can be found in this article.
Journal ArticleDOI

Testing nonclassicality in multimode fields: A unified derivation of classical inequalities

TL;DR: In this article, a way to generate operational inequalities to test nonclassicality (or quantumness) of multimode bosonic fields (or multiparty bosonic systems) that unifies the derivation of many known inequalities and allows to propose new ones is proposed.
Journal ArticleDOI

Faithful Squashed Entanglement

TL;DR: This paper presents a lower bound for squashed entanglement in terms of a distance to the set of separable states, and shows that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA.
References
More filters
Journal ArticleDOI

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

TL;DR: Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that one is led to conclude that the description of reality as given by a wave function is not complete.
Journal ArticleDOI

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels

TL;DR: An unknown quantum state \ensuremath{\Vert}\ensure Math{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations.
Journal ArticleDOI

Quantum cryptography based on Bell's theorem.

TL;DR: Practical application of the generalized Bells theorem in the so-called key distribution process in cryptography is reported, based on the Bohms version of the Einstein-Podolsky-Rosen gedanken experiment andBells theorem is used to test for eavesdropping.
Journal ArticleDOI

Simulating physics with computers

TL;DR: In this paper, the authors describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations, and the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.
Journal ArticleDOI

The wire-tap channel

TL;DR: This paper finds the trade-off curve between R and d, assuming essentially perfect (“error-free”) transmission, and implies that there exists a Cs > 0, such that reliable transmission at rates up to Cs is possible in approximately perfect secrecy.
Related Papers (5)