scispace - formally typeset
Journal ArticleDOI

Recent Advances in Two-Dimensional Materials beyond Graphene

TLDR
Insight is provided into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies.
Abstract
The isolation of graphene in 2004 from graphite was a defining moment for the “birth” of a field: two-dimensional (2D) materials In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement Here, we review significant recent advances and important new developments in 2D materials “beyond graphene” We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (ie, silicene, phosphorene, etc) and transition metal carbide- and carbon nitride-based MXenes We then discuss the doping and functionalization of 2

read more

Citations
More filters
Journal ArticleDOI

Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications

TL;DR: In this paper, the recent progress in 2D materials beyond graphene and includes mainly transition metal dichalcogenides (TMDs) (e.g., MoS2, WS2, MoSe2, and WSe2).
Journal ArticleDOI

Emerging Two-Dimensional Nanomaterials for Electrocatalysis

TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Journal ArticleDOI

Asymmetric Supercapacitor Electrodes and Devices.

TL;DR: Asymmetric supercapacitors assembled using two dissimilar electrode materials offer a distinct advantage of wide operational voltage window, and thereby significantly enhance the energy density, with the main focus on an extensive survey of the materials developed for ASC electrodes.
Journal ArticleDOI

Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes).

TL;DR: In this paper, the electronic and optical properties of 2D transition metal carbides, carbonitrides, and nitrides are discussed from both theoretical and experimental perspectives, as well as applications related to those properties.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu

TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Journal ArticleDOI

Semiempirical GGA-type density functional constructed with a long-range dispersion correction.

TL;DR: A new density functional of the generalized gradient approximation (GGA) type for general chemistry applications termed B97‐D is proposed, based on Becke's power‐series ansatz from 1997, and is explicitly parameterized by including damped atom‐pairwise dispersion corrections of the form C6 · R−6.
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Journal ArticleDOI

Single-layer MoS2 transistors

TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Related Papers (5)