scispace - formally typeset
Journal ArticleDOI

Recent advances of superhard nanocomposite coatings: a review

Reads0
Chats0
TLDR
A review of the present status of the research and technological development in the field of superhard nanocomposite coatings is attempted in this article, where a number of deposition techniques have been used to prepare Nanocomposites. Among them, reactive magnetron sputtering is most commonly used.
Abstract
In this paper, a review of the present status of the research and technological development in the field of superhard nanocomposite coatings is attempted. Various deposition techniques have been used to prepare nanocomposite coatings. Among them, reactive magnetron sputtering is most commonly used. Nanocomposite coating design methodology and synthesis are described with emphasis on the magnetron sputtering deposition technique. Also discussed are the hardness and fracture toughness measurements of the coatings and the size effect. Superhard nanocomposite thin films are obtainable through optimal design of microstructure. So far, much attention is paid to increasing hardness, but not enough to toughness. The development of next generation superhard coatings should base on appropriate material design to achieve high hardness and at the same time high toughness.

read more

Citations
More filters
Journal ArticleDOI

Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications

TL;DR: Characterization and Properties 3928 8.2.1.
Journal ArticleDOI

Understanding plasma spraying

TL;DR: In this paper, a summary of the actual knowledge in plasma spraying with an emphasis on the points where work is still in progress is presented, including: the plasma torches with the resulting plasma jets and their interactions with the surrounding environment, powder injection with the heat, momentum and mass transfers between particles and first plasma jets, the particles flattening and solidification, forming splats which then layer to form the coating.
Journal ArticleDOI

Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness

TL;DR: In this paper, the authors report on the enhanced hardness of nanocomposite coatings, their thermal stability, protection of the substrate against oxidation at temperatures above 1000°C, X-ray amorphous coatings thermally stable above 1000 °C and new advanced hard Nanocomposites with enhanced toughness which exhibit (i) low values of the effective Young's modulus E ⁎ satisfying the condition H/E < 0.1, (ii) high elastic recovery W e ǫ ≥ 60%, (iii) strongly improved tribological properties,
Journal ArticleDOI

Challenges and advances in nanocomposite processing techniques

TL;DR: In this article, the results from numerous studies on various methods for manufacturing nanocomposites with improved properties and retained nanostructures are discussed in detail in detail and recent advances are discussed.
Journal ArticleDOI

Metal oxide composites in conductometric gas sensors: Achievements and challenges

TL;DR: In this paper, the authors considered the features of conductometric gas sensors based on metal oxide composites and the methods of the composites forming and the advantages of their using in the development of gas sensors.
References
More filters
Journal ArticleDOI

An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments

TL;DR: In this paper, the authors used a Berkovich indenter to determine hardness and elastic modulus from indentation load-displacement data, and showed that the curve of the curve is not linear, even in the initial stages of the unloading process.
Journal ArticleDOI

Softening of nanocrystalline metals at very small grain sizes

TL;DR: In this paper, the deformation of nanocrystalline copper has been studied and it is shown that the hardness and yield stress of the material typically increase with decreasing grain size, a phenomenon known as the reverse Hall-Petch effect.
Journal ArticleDOI

Effects of the substrate on the determination of thin film mechanical properties by nanoindentation

TL;DR: In this paper, the effects of the substrate on the determination of mechanical properties of thin films by nanoindentation were examined, and the properties of aluminum and tungsten films on the following substrates: aluminum, glass, silicon and sapphire.
Journal ArticleDOI

The search for novel, superhard materials

TL;DR: The recent development in the field of superhard materials with Vickers hardness of ⩾40 GPa is reviewed in this article, where two basic approaches are outlined including the intrinsic superhard material, such as diamond, cubic boron nitride, C3N4, carbonitrides, etc. and extrinsic, nanostructured materials for which superhardness is achieved by an appropriate design of their microstructure.
Journal ArticleDOI

Measurement of mechanical properties by ultra-low load indentation

TL;DR: In this paper, the use of sharp indenters and how they can be used to measure elastic modulus, hardness, and fracture toughness is discussed, which characterize the three primary modes of deformation in solids.
Related Papers (5)