scispace - formally typeset
Journal ArticleDOI

Recycling of carbon dioxide to methanol and derived products – closing the loop

TLDR
Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion.
Abstract
Starting with coal, followed by petroleum oil and natural gas, the utilization of fossil fuels has allowed the fast and unprecedented development of human society. However, the burning of these resources in ever increasing pace is accompanied by large amounts of anthropogenic CO2 emissions, which are outpacing the natural carbon cycle, causing adverse global environmental changes, the full extent of which is still unclear. Even through fossil fuels are still abundant, they are nevertheless limited and will, in time, be depleted. Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion. The energy needed for the reduction of CO2 can come from any renewable energy source such as solar and wind. Methanol, the simplest C1 liquid product that can be easily obtained from any carbon source, including biomass and CO2, has been proposed as a key component of such an anthropogenic carbon cycle in the framework of a “Methanol Economy”. Methanol itself is an excellent fuel for internal combustion engines, fuel cells, stoves, etc. It's dehydration product, dimethyl ether, is a diesel fuel and liquefied petroleum gas (LPG) substitute. Furthermore, methanol can be transformed to ethylene, propylene and most of the petrochemical products currently obtained from fossil fuels. The conversion of CO2 to methanol is discussed in detail in this review.

read more

Citations
More filters
Journal ArticleDOI

The path towards sustainable energy

TL;DR: Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.
Journal ArticleDOI

Carbon capture and conversion using metal–organic frameworks and MOF-based materials

TL;DR: This review provides a comprehensive account of significant progress in the design and synthesis of MOF-based materials, including MOFs, MOF composites and MOF derivatives, and their application to carbon capture and conversion.
Journal ArticleDOI

Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels.

TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Journal ArticleDOI

Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment

TL;DR: The motivation to develop CO2-based chemistry does not depend primarily on the absolute amount of CO2 emissions that can be remediated by a single technology and is stimulated by the significance of the relative improvement in carbon balance and other critical factors defining the environmental impact of chemical production in all relevant sectors in accord with the principles of green chemistry.
Journal ArticleDOI

CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts

TL;DR: In this article, a review describes recent advances in the fundamental understanding of CO2 photoreduction on the surface of heterogeneous catalysts and particularly provides an overview of enhancing the adsorption/activation of CO 2 molecules.
References
More filters
Book

Modern Aspects of Electrochemistry

TL;DR: In this paper, the authors focus on topics at the forefront of electrochemical research, such as splitting water by electrolysis, splitting water with visible light, and the recent development of lithium batteries.
Journal ArticleDOI

Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change

TL;DR: This article found that corn-based ethanol, instead of producing a 20% savings, nearly doubled greenhouse emissions over 30 years and increased greenhouse gases for 167 years, by using a worldwide agricultural model to estimate emissions from land-use change.
Reference BookDOI

Handbook of Heterogeneous Catalysis

TL;DR: This paper presents a meta-modelling system that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of characterization and activation of Solid Catalysts.
Journal ArticleDOI

Land Clearing and the Biofuel Carbon Debt

TL;DR: Converting rainforests, peatlands, savannas, or grasslands to produce food crop–based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas reductions that these biofuel reductions would provide by displacing fossil fuels.
Related Papers (5)