scispace - formally typeset
Open AccessJournal ArticleDOI

Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle.

TLDR
Oocyte differentiation depends on continuous signaling interactions with the somatic cells of the follicle and may be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules.
Abstract
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis.

read more

Content maybe subject to copyright    Report

Citations
More filters

Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation

TL;DR: Because experimentally induced breakdown of communication within the ovarian follicle is associated with a drop in intraoocyte cAMP concentrations and results in resumption of meiosis, this could be the physiological mechanism employed by LH to stimulate oocyte maturation.
Journal ArticleDOI

Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice

TL;DR: It is shown that conditional knockout (cKO) of Mtor in either primordial or growing oocytes caused infertility but differentially affected oocyte quality, granulosa cell fate, and follicular development.
Journal Article

Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary

TL;DR: It is proposed that the basement membrane and/or theca cells that surround the follicle provide an important confinement for rapidly dividing columnar cells so that they attain maximum packing density, which restricts lateral mitosis and promotes inwardly oriented cell divisions and subsequent multilayering.
Journal ArticleDOI

Molecular regulation of follicle-stimulating hormone synthesis, secretion and action.

TL;DR: Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting and it is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.
Journal ArticleDOI

Mammalian Oocytes Locally Remodel Follicular Architecture to Provide the Foundation for Germline-Soma Communication

TL;DR: It is shown that TZP number and germline-soma communication are strikingly reduced in reproductively aged females, and an inability of somatic follicle cells to respond appropriately to oocyte-derived cues may contribute to human infertility.
References
More filters
Journal ArticleDOI

Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells.

TL;DR: It is concluded that oocytes play a dominant role in establishing the fundamental heterogeneity of the granulosa cell population of preovulatory follicles, as represented by the expression of LHR mRNA.
Journal ArticleDOI

Novel signaling mechanisms in the ovary during oocyte maturation and ovulation

TL;DR: This review will provide a summary of the current knowledge of the molecular events triggered by LH focusing mostly on the signaling pathways required for oocyte maturation.
Journal ArticleDOI

Oocyte-derived bmp15 and fgfs cooperate to promote glycolysis in cumulus cells

TL;DR: Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells and SU5402, an FGF receptor-dependent protein kinase inhibitor, inhibited Pfkp and Ldha expression in Cumulus cells promoted by paracrine oocyte factors.
Journal ArticleDOI

Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles

TL;DR: The results suggest that Tsc/mTORC1 signaling and PTEN/PI3K (phosphatidylinositol 3 kinase) signaling synergistically regulate the dormancy and activation of primordial follicles, and together ensure the proper length of female reproductive life.
Journal ArticleDOI

Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth.

TL;DR: The increase in the extent of metabolic cooperativity for 2-deoxyglucose during oocyte growth was probably due to formation of additional heterologous gap junctions between oocytes and new granulosa cells which come into contact with the growing oocyte.
Related Papers (5)