scispace - formally typeset
Open AccessJournal ArticleDOI

Reticular synthesis and the design of new materials

TLDR
This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Abstract
The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation

TL;DR: A new microporous metal-organic framework compound featuring chiral (salen)Mn struts is highly effective as an asymmetric catalyst for olefin epoxidation, yielding enantiomeric excesses that rival those of the free molecular analogue.
Journal ArticleDOI

Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics.

TL;DR: The term nonlinear optics (NLO) was coined to describe the nonlinear relationship between dielectric polarization P and electric field E in optical media to develop materials with the ability to alter the frequency of light, to amplify light signal, and to modulate light intensity or phase factors.
Journal ArticleDOI

Metal−Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide

TL;DR: Th thin films of nanosized metal-organic frameworks (MOFs) are introduced as atomically defined and nanoscopic materials that function as catalysts for the efficient and selective reduction of carbon dioxide to carbon monoxide in aqueous electrolytes.
Journal ArticleDOI

Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications

TL;DR: This critical review article summarizes the current state-of-the-art on the design principles and synthetic strategies toward COFs based on Schiff-base chemistry, collects and rationalizes their physicochemical properties, as well as aims to provide perspectives of potential applications which are at the forefront of research in materials science.
Journal ArticleDOI

Catalysis by metal nanoparticles embedded on metal–organic frameworks

TL;DR: The present review describes the use of metal-organic frameworks as porous matrices to embed metal nanoparticles (MNPs) and occasionally metal oxide clusters, which are subsequently used as heterogeneous catalysts, according to the embedded metal.
References
More filters
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Related Papers (5)