scispace - formally typeset
Open AccessJournal ArticleDOI

Seasonal characteristics of organic aerosol chemical composition and volatility in Stuttgart, Germany

TLDR
In this article, the chemical composition and volatility of organic aerosol (OA) particles were investigated during July-August 2017 and February-March 2018 in the city of Stuttgart, one of the most polluted cities in Germany.
Abstract
. The chemical composition and volatility of organic aerosol (OA) particles were investigated during July–August 2017 and February–March 2018 in the city of Stuttgart, one of the most polluted cities in Germany. Total non-refractory particle mass was measured with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; hereafter AMS). Aerosol particles were collected on filters and analyzed in the laboratory with a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToF-CIMS; hereafter CIMS), yielding the molecular composition of oxygenated OA (OOA) compounds. While the average organic mass loadings are lower in the summer period ( 5.1±3.2 µ g m −3 ) than in the winter period ( 8.4±5.6 µ g m −3 ), we find relatively larger mass contributions of organics measured by AMS in summer ( 68.8±13.4  %) compared to winter ( 34.8±9.5  %). CIMS mass spectra show OOA compounds in summer have O : C of 0.82±0.02 and are more influenced by biogenic emissions, while OOA compounds in winter have O : C of 0.89±0.06 and are more influenced by biomass burning emissions. Volatility parametrization analysis shows that OOA in winter is less volatile with higher contributions of low-volatility organic compounds (LVOCs) and extremely low-volatility organic compounds (ELVOCs). We partially explain this by the higher contributions of compounds with shorter carbon chain lengths and a higher number of oxygen atoms, i.e., higher O : C in winter. Organic compounds desorbing from the particles deposited on the filter samples also exhibit a shift of signal to higher desorption temperatures (i.e., lower apparent volatility) in winter. This is consistent with the relatively higher O : C in winter but may also be related to higher particle viscosity due to the higher contributions of larger-molecular-weight LVOCs and ELVOCs, interactions between different species and/or particles (particle matrix), and/or thermal decomposition of larger molecules. The results suggest that whereas lower temperature in winter may lead to increased partitioning of semi-volatile organic compounds (SVOCs) into the particle phase, this does not result in a higher overall volatility of OOA in winter and that the difference in sources and/or chemistry between the seasons plays a more important role. Our study provides insights into the seasonal variation of the molecular composition and volatility of ambient OA particles and into their potential sources.

read more

Content maybe subject to copyright    Report

Citations
More filters

Secondary Organic Aerosol Formation from Anthropogenic Air Pollution: Rapid and Higher than Expected

TL;DR: This paper showed that reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise, and a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products.

On the Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol

TL;DR: It is found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models.
Journal ArticleDOI

A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements

TL;DR: Aerosol composition varied largely in different regions, but was overall dominated by organic aerosols (OA, 32-75%), especially in south and southeast Asia due to the impact of biomass burning, and secondary OA was a ubiquitous and dominant aerosol component in all regions.
Journal ArticleDOI

Evaluating Organic Aerosol Sources and Evolution with a Combined Molecular Composition and Volatility Framework Using the Filter Inlet for Gases and Aerosols (FIGAERO).

TL;DR: Advances in the development and application of the Filter Inlet for Gases and Aerosols (FIGAERO) coupled to field-deployable High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS) are described.
References
More filters

Atmospheric chemistry and physics: from air pollution to climate change.

TL;DR: In this article, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Journal ArticleDOI

Evolution of Organic Aerosols in the Atmosphere

Jose L. Jimenez, +66 more
- 11 Dec 2009 - 
TL;DR: A unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state is presented, which can serve as a basis for improving parameterizations in regional and global models.
Related Papers (5)