scispace - formally typeset
Journal ArticleDOI

Separating root and soil microbial contributions to soil respiration: A review of methods and observations

TLDR
In this article, three primary methods have been used to distinguish hetero- versus autotrophic soil respiration including integration of components contributing to in situ forest soil CO2 efflux (i.e., litter, roots, soil), comparison of soils with and without root exclusion, and application of stable or radioactive isotope methods.
Abstract
Forest soil respiration is the sum of heterotrophic (microbes, soil fauna) and auto- trophic (root) respiration. The contribution of each group needs to be understood to evaluate implications of environmental change on soil carbon cycling and sequestration. Three primary methods have been used to distinguish hetero- versus autotrophic soil respiration including: integration of components contributing to in situ forest soil CO2 efflux (i.e., litter, roots, soil), comparison of soils with and without root exclusion, and application of stable or radioactive isotope methods. Each approach has advantages and disadvantages, but isotope based methods provide quantitative answers with the least amount of disturbance to the soil and roots. Pub- lished data from all methods indicate that root/rhizosphere respiration can account for as little as 10 percent to greater than 90 percent of total in situ soil respiration depending on vegetation type and season of the year. Studies which have integrated percent root contribution to total soil respiration throughout an entire year or growing season show mean values of 45.8 and 60.4 percent for forest and nonforest vegetation, respectively. Such average annual values must be extrapolated with caution, however, because the root contribution to total soil respiration is commonly higher during the growing season and lower during the dormant periods of the year. Abbreviations: TScer -t otal soil CO 2 efflux rate; f - fractional root contribution to TS cer; RC - root contribution to TScer

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change

TL;DR: In this paper, the authors measured carbon dioxide fluxes and estimated tree root respiration (Rr; across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013.
Journal ArticleDOI

Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen

TL;DR: In this paper, the mean residence time (MRT) of topsoil organic carbon is one critical parameter for predicting future land carbon sink dynamics, and the authors found that mean annual air temperature, annual precipitation, and top soil nitrogen storage were responsible for the variability in MRT.
Journal ArticleDOI

Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest

TL;DR: In this paper, the authors measured CO2 efflux from the floor of a central Siberian Scots pine (Pinus sylvestris) forest using a dynamic closed chamber system and by a eddy covariance system placed 2.5 m above the forest floor.
Journal ArticleDOI

Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest.

TL;DR: The seasonality of fine root dynamics with soil respiration in a ponderosa pine plantation located in the Sierra Nevada of California and how canopy photosynthesis influences fine root initiation, growth and mortality in this ecosystem was linked.
Book ChapterDOI

Plant-Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere.

TL;DR: Recent insights into plant-microbiota interactions at the root-soil interface are discussed, the processes driving mineral dynamics in soil are illustrated, and experimental avenues to further integrate the metabolic potential of the plant microbiota into crop management and breeding strategies for sustainable agricultural production are proposed.
References
More filters
Journal ArticleDOI

The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate

TL;DR: In this article, measured rates of soil respiration from terrestrial and wetland ecosystems were used to define the annual global CO 2 flux from soils, to identify uncertainties in the global flux estimate, and to investigate the influences of temperature, precipitation, and vegetation.
Journal ArticleDOI

Carbon Isotopes in PhotosynthesisFractionation techniques may reveal new aspects of carbon dynamics in plants

Marion H. O'Leary
- 01 May 1988 - 
TL;DR: The fractionation of carbon isotopes that occurs during photosynthesis is one of the most useful techniques for investigating the efficiency of CO2 uptake and indicates that different strategies are needed for improving wateruse efficiency in different kinds of plants.
Journal ArticleDOI

Soil respiration and the global carbon cycle

TL;DR: In this paper, the authors provide a brief review for policymakers who are concerned that changes in soil respiration may contribute to the rise in CO2 in Earth's atmosphere, while simultaneously leaving a greater store of carbon in the soil.
Journal ArticleDOI

Model estimates of CO2 emissions from soil in response to global warming

TL;DR: In this article, the Rothamsted model is used to calculate the amount of CO2 that would be released from the world stock of soil organic matter if temperatures increase as predicted, the annual return of plant debris to the soil being held constant.
Journal ArticleDOI

Plant decomposition and soil respiration in terrestrial ecosystems

TL;DR: In this article, a review deals with methodological approaches, measured rates, and environmental control of two major interdependent processes regulating the structure and function of terrestrial ecosystems, viz., plant decomposition and soil respiration.
Related Papers (5)