scispace - formally typeset
Open AccessJournal Article

Silicon as a mechanical material

Kurt E. Petersen
- 01 Jan 1999 - 
- Vol. 153, pp 3-40
Reads0
Chats0
TLDR
In this article, the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures are discussed.
Abstract
Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

In situ characterization of PDMS in SOI-MEMS

Abstract: This paper presents the in situ characterization of microscale poly(dimethylsiloxane) (PDMS) springs using silicon-on-insulator-microelectromechanical systems (SOI-MEMS). PDMS samples that were 30??m long, 20??m thick, and 6??m wide were fabricated on-chip along with a test mechanism that included electrostatic comb drive actuators and silicon flexures. The test mechanism allowed for applying strains up to 65%. The in situ test results were compared with results of tests on macroscale samples performed using a dynamic mechanical analyzer. The results imply that the process steps during fabrication initially led to increased crosslinking of the PDMS but that the final release of the structure in buffered hydrofluoric acid decreased the crosslink density, thereby decreasing the stiffness of the PDMS. Several implications of the results on processing PDMS in MEMS are presented. The results of this work are important for the design of MEMS devices which incorporate PDMS as a mechanical material.
Journal ArticleDOI

Measuring and interpreting the mechanical–thermal noise spectrum in a MEMS

TL;DR: In this paper, the meta-stability of the pull-in displacement of an electrostatically operated parallel plate micromechanical structure is used for the capacitive measurement of the mechanical-thermal noise spectrum in a MEMS.
Proceedings ArticleDOI

Nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch

TL;DR: In this article, the authors demonstrate full closed-loop control of electrostatically actuated double-gimbaled MEMS mirrors and use them in a free space optical cross-connect with switching times of less than 10 ms.
Proceedings ArticleDOI

A new neural probe using SOI wafers with topological interlocking mechanisms

TL;DR: In this article, a method of fabricating multielectrode arrays on undoped single-crystal silicon for use in electrical stimulation and recording of nerve signals has been developed.
Journal ArticleDOI

Silicon anti-resonant reflecting optical waveguides for sensor applications

TL;DR: In this article, the authors present a variety of device structures, for detection of mechanical signals, along with structures for coupling light to integrated photodetectors, based on the antiresonant reflecting optical waveguide (ARROW).
References
More filters
Journal ArticleDOI

High-performance heat sinking for VLSI

TL;DR: In this paper, a water-cooled integral heat sink for silicon integrated circuits has been designed and tested at a power density of 790 W/cm2, with a maximum substrate temperature rise of 71°C above the input water temperature.
Book

Formulas for Stress and Strain

TL;DR: In this article, the authors propose formulas for stress and strain in the form of formulas for strain and stress, which are derived from the formula for stress-and-stress and strain.
Journal ArticleDOI

A gas chromatographic air analyzer fabricated on a silicon wafer

TL;DR: In this article, a miniature gas analysis system based on the principles of gas chromatography (GC) has been built in silicon using photolithography and chemical etching techniques, which allows size reductions of nearly three orders of magnitude compared to conventional laboratory instruments.
Journal ArticleDOI

The resonant gate transistor

TL;DR: In this paper, the resonant gate transistor (RGT) is described as an electrostatically excited tuning fork employing field effect transistor readout, which can be batch-fabricated in a manner consistent with silicon technology.
Journal ArticleDOI

Electrolytic shaping of germanium and silicon

TL;DR: In this article, the properties of electrolyte-semiconductor barriers are described, with emphasis on germanium, and the use of these barriers in localizing electrolytic etching is discussed.
Related Papers (5)