scispace - formally typeset
Open AccessJournal Article

Silicon as a mechanical material

Kurt E. Petersen
- 01 Jan 1999 - 
- Vol. 153, pp 3-40
Reads0
Chats0
TLDR
In this article, the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures are discussed.
Abstract
Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Microstrip filters for RF/microwave applications

TL;DR: In this paper, the authors present a general framework for coupling matrix for Coupled Resonator Filters with short-circuited Stubs (UWB) and Cascaded Quadruplet (CQ) filters.
Journal ArticleDOI

2D transition metal dichalcogenides

TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Journal ArticleDOI

A review of micropumps

TL;DR: In this article, the authors survey progress over the past 25 years in the development of microscale devices for pumping fluids and attempt to provide both a reference for micropump researchers and a resource for those outside the field who wish to identify the best micropumps for a particular application.
Journal ArticleDOI

Evidence for van der Waals adhesion in gecko setae

TL;DR: This work provides the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects.
Journal ArticleDOI

What is the Young's Modulus of Silicon?

TL;DR: In this paper, the authors present the best known elasticity data for silicon, both in depth and in a summary form, so that it may be readily accessible to MEMS designers.
References
More filters
Journal ArticleDOI

Correlation of the anisotropic etching of single−crystal silicon spheres and wafers

TL;DR: In this paper, anisotropic etching of silicon single-crystal wafers and spheres using 10−M potassium hydroxide as the etchant was studied and the angles of inclination varied with azimuthal position and could be correlated with the slow-etch directions measured from an etched sphere.
Journal ArticleDOI

Mechanical Strength of Thin Films of Metals

TL;DR: In this article, the tensile strength of steel rotors was determined as a function of their thickness and the adhesion of the films was measured by electrodepositing the films on the rotor in circumferentially disconnected patches.
Journal ArticleDOI

Vertical channel field-controlled thyristors with high gain and fast switching speeds

TL;DR: In this paper, a planar, surface-grid, field-controlled thyristor (FCT) structure is described, which is fabricated by using orientation-dependent etching and selective vapor epitaxial growth to obtain vertical grid walls.
Related Papers (5)