scispace - formally typeset
Open AccessJournal Article

Silicon as a mechanical material

Kurt E. Petersen
- 01 Jan 1999 - 
- Vol. 153, pp 3-40
Reads0
Chats0
TLDR
In this article, the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures are discussed.
Abstract
Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Biotechnology at low Reynolds numbers

TL;DR: An intuitive explanation of how the different physics of small Reynolds numbers flow, along with microscopic sizes, can influence device design is presented, and examples from the own work using fluid flow in microfabricated devices designed for biological processing are given.
Journal ArticleDOI

RF MEMS from a device perspective

TL;DR: The recent progress in MEMS for radio frequency (RF) applications from a device perspective is reviewed in this article, where switches and relays, tunable capacitors, integrated inductors, mechanical resonators and filters, and some representative microwave and millimetre-wave components are discussed.
Journal ArticleDOI

Micromachined pressure sensors: review and recent developments

TL;DR: In this paper, the authors reviewed the history of micromachined pressure sensors and examined new developments in the field of pressure sensors, starting from metal diaphragm sensors with bonded silicon strain gauges, and moving to present developments of surface-micromachines, optical, resonant, and smart pressure sensors.
Journal ArticleDOI

Microfluidics meets MEMS

TL;DR: Developments that have emerged from the increasing interaction between the MEMS and microfluidics worlds, including how to integrate electrical or electrochemical function into chips for purposes as diverse as heating, temperature sensing, electrochemical detection, and pumping are explored.
References
More filters
Journal ArticleDOI

High-performance heat sinking for VLSI

TL;DR: In this paper, a water-cooled integral heat sink for silicon integrated circuits has been designed and tested at a power density of 790 W/cm2, with a maximum substrate temperature rise of 71°C above the input water temperature.
Book

Formulas for Stress and Strain

TL;DR: In this article, the authors propose formulas for stress and strain in the form of formulas for strain and stress, which are derived from the formula for stress-and-stress and strain.
Journal ArticleDOI

A gas chromatographic air analyzer fabricated on a silicon wafer

TL;DR: In this article, a miniature gas analysis system based on the principles of gas chromatography (GC) has been built in silicon using photolithography and chemical etching techniques, which allows size reductions of nearly three orders of magnitude compared to conventional laboratory instruments.
Journal ArticleDOI

The resonant gate transistor

TL;DR: In this paper, the resonant gate transistor (RGT) is described as an electrostatically excited tuning fork employing field effect transistor readout, which can be batch-fabricated in a manner consistent with silicon technology.
Journal ArticleDOI

Electrolytic shaping of germanium and silicon

TL;DR: In this article, the properties of electrolyte-semiconductor barriers are described, with emphasis on germanium, and the use of these barriers in localizing electrolytic etching is discussed.
Related Papers (5)