scispace - formally typeset
Open AccessJournal ArticleDOI

Single-Layer MoS2 Phototransistors

Reads0
Chats0
TLDR
The unique characteristics of incident-light control, prompt photoswitching, and good photoresponsivity from the MoS(2) phototransistor pave an avenue to develop the single-layer semiconducting materials for multifunctional optoelectronic device applications in the future.
Abstract
A new phototransistor based on the mechanically exfoliated single-layer MoS2 nanosheet is fabricated, and its light-induced electric properties are investigated in detail. Photocurrent generated from the phototransistor is solely determined by the illuminated optical power at a constant drain or gate voltage. The switching behavior of photocurrent generation and annihilation can be completely finished within ca. 50 ms, and it shows good stability. Especially, the single-layer MoS2 phototransistor exhibits a better photoresponsivity as compared with the graphene-based device. The unique characteristics of incident-light control, prompt photoswitching, and good photoresponsivity from the MoS2 phototransistor pave an avenue to develop the single-layer semiconducting materials for multifunctional optoelectronic device applications in the future.

read more

Citations
More filters
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Journal ArticleDOI

Ultrasensitive photodetectors based on monolayer MoS2.

TL;DR: Ultraensitive monolayer MoS2 phototransistors with improved device mobility and ON current are demonstrated, showing important potential for applications in MoS 2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Proceedings Article

Physics of semiconductor devices

S. M. Sze
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Journal ArticleDOI

Single-layer MoS2 transistors

TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Related Papers (5)