scispace - formally typeset
Journal ArticleDOI

Small molecule semiconductors for high-efficiency organic photovoltaics

Yuze Lin, +2 more
- 15 May 2012 - 
- Vol. 41, Iss: 11, pp 4245-4272
Reads0
Chats0
TLDR
This review summarizes the developments in small molecular donors, acceptors, and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs and focuses on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances.
Abstract
Organic photovoltaic cells (OPVs) are a promising cost-effective alternative to silicon-based solar cells, and possess light-weight, low-cost, and flexibility advantages. Significant progress has been achieved in the development of novel photovoltaic materials and device structures in the last decade. Nowadays small molecular semiconductors for OPVs have attracted considerable attention, due to their advantages over their polymer counterparts, including well-defined molecular structure, definite molecular weight, and high purity without batch to batch variations. The highest power conversion efficiencies of OPVs based on small molecular donor/fullerene acceptors or polymeric donor/fullerene acceptors are up to 6.7% and 8.3%, respectively, and meanwhile nonfullerene acceptors have also exhibited some promising results. In this review we summarize the developments in small molecular donors, acceptors (fullerene derivatives and nonfullerene molecules), and donor–acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs. We focus on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances. This structure–property relationship analysis may guide rational structural design and evaluation of photovoltaic materials (253 references).

read more

Citations
More filters
Journal ArticleDOI

An electron acceptor challenging fullerenes for efficient polymer solar cells.

TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Journal ArticleDOI

Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells

TL;DR: Progress is summarized, aiming to describe the molecular design strategy, to provide insight into the structure-property relationship, and to highlight the challenges the field is facing, with emphasis placed on most recent nonfullerene acceptors that demonstrated top-of-the-line photovoltaic performances.
Journal ArticleDOI

Organic light detectors: photodiodes and phototransistors.

TL;DR: This review suggests that organic phototransistors have a large potential to be used in a variety of optoelectronic peculiar applications, such as a photo-sensor, opto-isolator, image sensor, optically controlled phase shifter, and opto -electronic switch and memory.
Journal ArticleDOI

25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research

TL;DR: This review article takes a retrospective look at the research and development of OPV, and focuses on recent advances of solution-processed materials and devices during the last decade, particular the polymer version of the materials and Devices.
References
More filters
Journal ArticleDOI

Polymer solar cells with enhanced open-circuit voltage and efficiency

TL;DR: In this article, the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups.
Journal ArticleDOI

Stability/degradation of polymer solar cells

TL;DR: In this article, the current understanding of stability/degradation in organic and polymer solar cell devices is presented and the methods for studying and elucidating degradation are discussed Methods for enhancing the stability through the choice of better active materials, encapsulation, application of getter materials and UV-filters are also discussed
Journal ArticleDOI

Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics

TL;DR: Self-organization of liquid crystalline and crystalline-conjugated materials has been used to create, directly from solution, thin films with structures optimized for use in photodiodes, demonstrating that complex structures can be engineered from novel materials by means of simple solution-processing steps and may enable inexpensive, high-performance, thin-film photovoltaic technology.
Journal ArticleDOI

Conjugated Polymer Photovoltaic Cells

TL;DR: In this paper, the authors showed that the photogenerated excitons are usually not split by the built-in electric field, which arises from differences in the electrode work functions.
Related Papers (5)