scispace - formally typeset
Journal ArticleDOI

Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells

TLDR
Progress is summarized, aiming to describe the molecular design strategy, to provide insight into the structure-property relationship, and to highlight the challenges the field is facing, with emphasis placed on most recent nonfullerene acceptors that demonstrated top-of-the-line photovoltaic performances.
Abstract
The bulk-heterojunction blend of an electron donor and an electron acceptor material is the key component in a solution-processed organic photovoltaic device. In the past decades, a p-type conjugated polymer and an n-type fullerene derivative have been the most commonly used electron donor and electron acceptor, respectively. While most advances of the device performance come from the design of new polymer donors, fullerene derivatives have almost been exclusively used as electron acceptors in organic photovoltaics. Recently, nonfullerene acceptor materials, particularly small molecules and oligomers, have emerged as a promising alternative to replace fullerene derivatives. Compared to fullerenes, these new acceptors are generally synthesized from diversified, low-cost routes based on building block materials with extraordinary chemical, thermal, and photostability. The facile functionalization of these molecules affords excellent tunability to their optoelectronic and electrochemical properties. Within t...

read more

Citations
More filters
Journal ArticleDOI

Organic and solution-processed tandem solar cells with 17.3% efficiency

TL;DR: In this article, a semi-empirical model analysis and using the tandem cell strategy to overcome the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption was performed.
Journal ArticleDOI

Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages

TL;DR: This study demonstrates that finely tuning the OPV materials to reduce the bandgap-voltage offset has great potential for boosting the efficiency and unexpectedly obtain higher open-circuit voltages and achieve a record high PCE of 16.5% by chlorination.
Journal ArticleDOI

Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells

TL;DR: In this paper, a small molecule acceptor (SMA) with 3rd position branched alkyl chains was designed and synthesized to investigate the influence of alkyls on the properties and performance of the SMAs.
References
More filters
Journal ArticleDOI

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells

TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Journal ArticleDOI

Polymer photovoltaic cells : enhanced efficiencies via a network of internal donor-acceptor heterojunctions

TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Journal ArticleDOI

Solar Water Splitting Cells

TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Journal ArticleDOI

Two‐layer organic photovoltaic cell

TL;DR: In this paper, a two-layer organic photovoltaic cell was fabricated from copper phthalocyanine and a perylene tetracarboxylic derivative, achieving a power conversion efficiency of about 1% under simulated AM2 illumination.
Journal ArticleDOI

Photoinduced electron transfer from a conducting polymer to buckminsterfullerene.

TL;DR: Because the photoluminescence in the conducting polymer is quenched by interaction with C60, the data imply that charge transfer from the excited state occurs on a picosecond time scale.
Related Papers (5)