scispace - formally typeset
Journal ArticleDOI

The Future of Seawater Desalination: Energy, Technology, and the Environment

Menachem Elimelech, +1 more
- 05 Aug 2011 - 
- Vol. 333, Iss: 6043, pp 712-717
Reads0
Chats0
TLDR
The possible reductions in energy demand by state-of-the-art seawater Desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages are reviewed.
Abstract
In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.

read more

Citations
More filters
Journal ArticleDOI

Perspective: Interfacial materials at the interface of energy and water

TL;DR: In this paper, the authors examine the interfaces between components of water systems and the water-based fluids themselves and survey opportunities for scientists and engineers to reveal new insights into their function and to design novel technologies for next-generation solutions to our collective energy-water challenges.
Journal ArticleDOI

Polydopamine coating effects on ultrafiltration membrane to enhance power density and mitigate biofouling of ultrafiltration microbial fuel cells (UF-MFCs).

TL;DR: A polydopamine (PD) coating was adopted for the modification of ultrafiltration membrane surfaces in UF membrane integrated MFCs (UF-MFCs) to reduce membrane resistance caused by migrative ion transport resistance and membrane biofouling.
Journal ArticleDOI

Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination?

TL;DR: A review of the current state of the application of carbon-based nanomaterials, including carbon nanotubes, graphene, graphene oxide, carbon nanofibers, MXene, carbide derived carbon and fullerene for membrane preparation is provided in this paper.
Journal ArticleDOI

Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.

TL;DR: This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.
References
More filters
Journal ArticleDOI

Science and technology for water purification in the coming decades

TL;DR: Some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water are highlighted.
Journal ArticleDOI

Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes

TL;DR: Gas and water flow measurements through microfabricated membranes in which aligned carbon nanotubes with diameters of less than 2 nanometers serve as pores enable fundamental studies of mass transport in confined environments, as well as more energy-efficient nanoscale filtration.
Journal ArticleDOI

Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications

TL;DR: Mixed-charge materials have been shown to be equivalent to zwitterionic materials in resisting nonspecific protein adsorption when they are uniformly mixed at the molecular scale.
Journal ArticleDOI

State-of-the-art of reverse osmosis desalination

TL;DR: The most commonly used desalination technologies are reverse osmosis (RO) and thermal processes such as multi-stage flash (MSF) and multi-effect distillation (MED) as mentioned in this paper.
Journal ArticleDOI

A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein

TL;DR: In this paper, the authors used surface plasmon resonance spectroscopy and self-assembled monolayers (SAMs) to determine the characteristics of functional groups that give surfaces the ability to resist the nonspecific adsorption of proteins from solution.
Related Papers (5)