scispace - formally typeset
Open AccessJournal ArticleDOI

The structure and function of G-protein-coupled receptors

Daniel M. Rosenbaum, +2 more
- 21 May 2009 - 
- Vol. 459, Iss: 7245, pp 356-363
Reads0
Chats0
TLDR
G-protein-coupled receptors mediate most of the authors' physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases.
Abstract
G-protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases. They are also fascinating molecules from the perspective of membrane-protein structure and biology. Great progress has been made over the past three decades in understanding diverse GPCRs, from pharmacology to functional characterization in vivo. Recent high-resolution structural studies have provided insights into the molecular mechanisms of GPCR activation and constitutive activity.

read more

Citations
More filters
Journal ArticleDOI

The amyloid state and its association with protein misfolding diseases

TL;DR: The ability to form the amyloid state is more general than previously imagined, and its study can provide unique insights into the nature of the functional forms of peptides and proteins, as well as understanding the means by which protein homeostasis can be maintained and protein metastasis avoided.
Journal ArticleDOI

Structure of a nanobody-stabilized active state of the β2 adrenoceptor

TL;DR: A camelid antibody fragment to the human β2 adrenergic receptor is generated, and an agonist-bound, active-state crystal structure of the receptor-nanobody complex is obtained, providing insights into the process of agonist binding and activation.
Journal ArticleDOI

Molecular signatures of G-protein-coupled receptors.

TL;DR: Through a systematic analysis of high-resolution GPCR structures, a conserved network of non-covalent contacts that defines the G PCR fold is uncovered and characteristic features of ligand binding and conformational changes during receptor activation are revealed.
Journal ArticleDOI

International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update

TL;DR: In the 10 years since the previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations, but there have been so many other developments that an update is needed.
Journal ArticleDOI

The coming of age of de novo protein design

TL;DR: De novo protein design explores the full sequence space, guided by the physical principles that underlie protein folding, to design new functional proteins from the ground up to tackle current challenges in biomedicine and nanotechnology.
References
More filters
Journal ArticleDOI

Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor

TL;DR: This article determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution and found that the highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the sevenhelix transmembrane motif.
Journal ArticleDOI

High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor

TL;DR: Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopin as a template model for this large receptor family.
Journal ArticleDOI

The G-Protein-Coupled Receptors in the Human Genome Form Five Main Families : Phylogenetic Analysis, Paralogon Groups, and Fingerprints

TL;DR: This study represents the first overall map of the GPCR sequences in a single mammalian genome and shows several common structural features indicating that the human GPCRs in the GRAFS families share a common ancestor.
Book ChapterDOI

[19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors

TL;DR: This chapter discusses the integrated methods for the construction of three-dimensional models and computational probing of structure–function relations in G protein-coupled receptors (GPCR) and expects increased rate of success achieved by molecular modeling and computational simulation methods in providing structural insights relevant to the functions of biological molecules.
Related Papers (5)