scispace - formally typeset
Open AccessPosted ContentDOI

The TRF2 General Transcription Factor Is a Key Regulator of Cell Cycle Progression

Reads0
Chats0
TLDR
It is demonstrated that TRF2 knockdown regulates cell cycle progression and exerts distinct effects on G1 and specific mitotic phases, uncovering a critical and unanticipated role of a general transcription factor as a key regulator of cell cycle.
Abstract
TRF2 (TATA-box-binding protein-related factor 2) is an evolutionarily conserved general transcription factor that is essential for embryonic development of Drosophila melanogaster, C. elegans, zebrafish and Xenopus. Nevertheless, the cellular processes that are regulated by TRF2 are largely underexplored. Here, using Drosophila Schneider cells as a model, we discovered that TRF2 regulates cell cycle progression. Using flow cytometry, high-throughput microscopy and advanced imaging-flow cytometry, we demonstrate that TRF2 knockdown regulates cell cycle progression and exerts distinct effects on G1 and specific mitotic phases. RNA-seq analysis revealed that TRF2 regulates the expression of Cyclin E and the mitotic cyclins, Cyclin A, Cyclin B and Cyclin B3, but not Cyclin D or Cyclin C. To identify proteins that could account for the observed regulation of these cyclin genes, we searched for TRF2-interacting proteins. Interestingly, mass spectrometry analysis of TRF2-containing complexes identified GFZF, a nuclear glutathione S-transferase implicated in cell cycle regulation, and Motif 1 binding protein (M1BP). Furthermore, available ChIP-exo data revealed that TRF2, GFZF and M1BP co-occupy the promoters of TRF2-regulated genes. Using RNAi to knockdown the expression of either M1BP, GFZF, TRF2 or their combinations, we demonstrate that although GFZF and M1BP interact with TRF2, it is TRF2, rather than GFZF or M1BP, that is the main factor regulating the expression of Cyclin E and the mitotic cyclins. Taken together, our findings uncover a critical and unanticipated role of a general transcription factor as a key regulator of cell cycle.

read more

Content maybe subject to copyright    Report

!
!
!
"!
!
!
!
!"#$!%&'$(#)#*+,$!*+)-.*/01/2)$&+.12*$$
3-$+$4#5$%#67,+12*$28$9#,,$9 5.,#$:*26*#--/2)$
$
$
$
#$%!&'$(%
)
*!#++,!-./0123%+
)
*
!
4,1,.%'!5621'%+
)
*!
!
7%1,.!8,29%:;./1+%123<
)
*!='>><!
?@3/A%@B
)
*!?9%1!-C/D,.
)
*!E%9B,!=/+%F'9
)
*!5.%'B'9!=,9(/+
)
*!=%,+,!?$'2'2
)
*!G%D!;/9,1
H
*!
I9.<!J,9/+
)
*!,+$!E,(,9!K0D'+:8'92C/+
)"
!
!
)
!EC'! L%+,!,+$!5D'9,9$!8//$(,+!M,@0.1<!/N!7%N'!-@%'+@'2*!O,9:?.,+!P+%D'92%1<*!
Q,(,1!8,+!RSTUUUS*!?29,'.V!, +$!
!
H
!EC'! M./A!W<1/('19<!P+%1*!7%N'!-@%'+@'2!W/9'!M,@%.%1%'2*!X'%B(,++!?+21%101'!/N!
-@%'+@'*!Q'C/D/ 1!YZ"UUU"*!?29,'.!
!
"
!W/99'26/+$'+@'[!EC'!L%+,!,+$!5D'9,9$!8//$(,+!M,@0.1<!/N!7%N'!-@%'+@'2*!O,9:
?.,+!P+%D'9 2%1<*!Q,(,1!8,+!RSTUUUS*!?29,'.\!5:(,%.[!1,(,9\F'92C/+]>%0\,@\%.!
!
!
!
$
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.03.27.011288doi: bioRxiv preprint

!
!
!
S!
;<-1*+.1
EQMS! ^E#E#:>/_:>%+$%+F! 69/1'%+:9'.,1'$! N,@1/9! S`! %2! ,+! 'D/.01%/+,9%.<! @/+2'9D'$!
F'+'9,.!19,+2@9%61%/+!N,@1/9!1C,1!%2!'22'+1%,.!N/9!'(>9</+%@!$'D'./6('+1!/N!Drosophila*
melanogaster*! C.* elegans*! B'>9,N%2C! ,+$! Xenopus\! 4'D'91C'.'22*! 1C'! @'..0.,9!
69/@'22'2!1C,1!,9'!9'F0.,1'$!><!EQMS!,9'!.,9F'.<!0+$'9'_6./9'$\!!
a'9'*! 02%+F! Drosophila! -@C+'%$'9! @'..2! ,2! ,! (/$'.*! A'! $%2@/D'9'$! 1C,1! EQMS!
9'F0., 1'2! @'..!@<@.'! 69/F9'22%/+\! P2%+F ! N./ A! @<1/('19 <*! C%FC:1C9/0FC601!(%@9/2@/6<!
,+$! ,$D,+@'$! %(,F%+F:N./A! @<1/('19<*! A'! $'(/+219,1'! 1C,1! EQMS! 3+/@3$/A+!
9'F0., 1'2!@'..!@<@.'!69/F9'22%/+!,+$!'_'912!$%21%+@1!'NN'@12!/+!8"!, +$!26'@%N%@!(%1/1%@!
6C,2'2\!Q4#:2'b!,+,.<2%2!9'D',.'$!1C,1!EQMS!9'F0.,1'2!1C'!'_69'22%/+!/N!Cyclin*E!
,+$!1C'!(%1/1%@!@<@.%+2*!Cyclin*A*!Cyclin* B!,+$!Cyclin*B3*!>01!+/1!Cyclin*D*/9!Cyclin*C\!
E/! %$'+1%N<! 69/1'%+2! 1C,1! @/ 0.$! ,@@/0+1! N/9! 1C'! />2'9D'$! 9'F0.,1%/+! /N! 1C'2'! @<@.%+!
F'+'2*!A'!2',9@C'$!N/9!EQMS:%+1'9,@1%+F!69/1'%+2\!?+1'9'21%+F.<*!(,22!26'@19/('19<!
,+,.<2%2! /N! EQMS:@/+1,%+%+F! @/(6.'_'2! %$'+1%N%'$! 8MGM*! ,! +0@.',9! F.01,1C%/+'! -:
19,+2N'9,2'! %(6.%@,1'$! %+! @'..! @<@.'! 9'F0.,1%/+*! ,+$! L/1%N! "! >%+$%+F! 69/1'%+! ^L"O;`\!
M091C'9(/9'*! ,D,%.,> .'! WC?;:'_/! $,1,! 9'D',.'$! 1C,1! EQMS*! 8MGM! ,+$! L"O;! @/:
/@@06<! 1C '! 69/(/1'92! /N! EQMS:9'F0.,1'$! F'+'2\! P2%+F! Q4#%! 1/! 3+/@3$/A+! 1C'!
'_69'22%/ +!/N!'%1C'9!L"O;*!8MGM *! EQMS!/9!1C'%9!@/(>%+,1%/+2*!A'!$'(/+219,1'!1C,1!
,.1C/0FC!8MGM!,+$!L" O;!%+1'9,@1!A%1C!EQMS*!%1!%2!EQMS*!9,1C'9!1C,+!8MGM!/9!L"O;*!
1C,1!%2!1C'!(,%+!N,@1/9!9'F0., 1%+F!1C'!'_69'22%/+!/N!Cyclin*E!,+$!1C'!(%1/1%@!@<@.%+2\!
E,3'+ ! 1/F'1C'9*! /09! N%+$ %+F2! 0+@/D'9! ,! @9%1%@,.! ,+$! 0+,+1%@%6,1'$! 9/.'! /N! ,! F'+'9,.!
19,+2@9%61%/+!N,@1/9!,2!,!3'<!9'F0.,1/9!/N!@'..!@<@.'\!
!
$
$
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.03.27.011288doi: bioRxiv preprint

!
!
!
c!
4#5=2*>-$
O,2,.!19,+2@9%61%/+!(,@C%+'9<*!Q4#!6/.<('9,2'!??*!E#E#!>/_:>%+$%+F!69/1'%+!^EO;`*!
EO;:9'.,1' $!N,@1/9!S!^EQMS`*!@<@.%+!F'+'2\!
$
;<<*#?/+1/2)-$
WC?;:'_/!:!@C9/(,1%+!%((0+/69'@%6%1,1%/+!@/(>%+'$!A%1C!'_/+0@.',2'!$%F'21%/+!
N/../A'$!><!C%FC:1C9/0FC601!2'b0'+@%+F!
=;5!:!$/A+219',(!@/9'!69/( /1'9!'.'('+1!
8MGM!:!8-E:@/+1,%+%+F!M7JXWa!B%+@:N%+F'9 !69/1'%+!
L"O;!: !L/1%N!"!>%+$%+F!69/1'%+!!
;/.!??!:!Q4#!6/.<('9,2'!??!
EO;!:!E#E#:>/_:>%+$%+F!69/1'%+!
EQMS!:!EO;:9'.,1'$!N,@1/9!S!
E--!:!E9,+2@9%61%/+!21,91!2%1'!
$
3)1*2>7.1/2)$
L0.1%6.'!>%/./F%@,.!69/@'22'2!,+$!19,+2@9%61%/+,.!69/F9,(2!,9'!9'F0.,1'$!><!Q4#!
6/.<('9,2'!??!^;/.!??`\!EC'! %+%1%,1%/+!/N!19,+2@9%61%/+!/N!69/1'%+:@/$%+F!F'+'2!,+$!
$%21%+@1!+/+:@/$%+F!Q4#2!/@@092!N/../A%+F!1C'!9'@90%1('+1!/N!;/.!??!1/!1C'!@/9'!
69/(/1'9!9'F%/+!><!1C'!F'+'9,.d>,2,.!19,+2@9%61%/+!(,@C%+'9<!e":fg\!EC'!@/9'!
69/(/1'9*!AC%@C!$%9'@12!,@@09,1'!%+%1%,1%/+!/N!19,+2@9%61%/+!,+$!'+@/(6,22'2!1C'!
19,+2@9%61%/+!21,91!2%1'!^E--`*!(,<!@/+1,%+!2C/91!=4#!2'b0'+@'!'.'('+12d(/1%N2*!
AC%@C!@/+N'9!26'@%N%@!69/6'91%'2!1/!1C'!@/9'!69/(/1 '9!e"*!f:"Ug\!EC'!N%921!21'6! %+!1C'!
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.03.27.011288doi: bioRxiv preprint

!
!
!
f!
9'@90%1('+1!/N!;/.!??!1/!%+%1%,1'!19,+2@9%61%/+!%2!1C '!>%+$%+F!/N!EM??=*!AC%@C!%2!
@/(6/2'$!/N!E#E#:>/_:>%+$%+F!69/1'%+!^EO;`!,+$!EO;:,22/@%,1'$!N,@1/92\!
Q'(,93,>.<*!,.1C/0FC!EO;!%2!@/+2%$'9'$!,!0+%D'92,.!F'+'9,.!19,+2@9%61%/+!N,@1/9*!
9/>021 !;/.!??!19,+2@9%61%/+!%2!/>2'9D'$!%+!(/02'!EO;:d:!>., 21/@<212*!%+$%@,1%+F!1C'!
'_%21'+@'!/N!EO;:%+$'6'+$'+1!;/.!??!19,+2@9%61%/+!in*vivo!e""g\!EC'!@/(6.'_%1<!/N!
19,+2@9%61%/+!%2!,.2/!(,+%N'21'$!><!1C'!'_%21'+@'!/N!$%D'92'!19,+2@9%61%/+,.!9'F0.,1/92*!
,(/+F!AC%@C!,9'!1C'!EO;!N,(%.<!('(>'92\!EC'9'!,9'!1C9''!EO;!N,(%.<!('(>'92! %+!
Drosoph ila!melanogaster[!EO;*!EQM"!,+$!EQMS!^9'D%'A'$!%+! e"S:"Zg`\!EQM"*!1C'!
N%921!Drosophila!EO;!N,(%.<!('(>'9!%$'+1%N%'$*!%2!%+2'@1!26'@%N%@!e"Yg\!#+!'D/.01%/+,9<!
@/+2'9D,1%/+!,+,.<2%2!%+$%@,1'$!1C,1!EQMS!^,.2/!3+/A+!,2!E7;!^E#E#:.%3'!69/1'%+`*
!
E7M!^EO;:.%3'!N,@1/9`*
!
EQ;!^EO;:9'.,1'$!69/1'%+`! ,+$!EO;7"!^EO;:.%3'!"``*!%2!C%FC.<!
@/+2'9D'$!%+!'D/.01%/+!e"S*!"h:SSg!,+$!%2!69'2'+1!%+!,..!>%.,1'9%,+!/9F,+ %2(2*!>01!+/1!
%+!,+<!/N!1C'!+/+:>%.,1'9%,+!F'+/('2!,D,%.,>.'!e"Tg\!?1!A,2!N091C'9!$%2@/D'9'$!1C,1!
EQMS*!AC%@C!%2!%+D/.D'$!%+!;/.!??!19,+2@9%61%/+*!'D/.D'$!><!$06.%@,1%/+!/N!1C'!EO;!
F'+'!e"Tg\!J'1*!0+.%3'!EO;!,+$!E QM"*!EQMS!$/'2!+/1!>%+$!E#E#:>/_!@/+1,%+%+F!
69/(/1'92!e"T*!SU*!SSg\!EC'9'!,9'!1A/!Drosophila!EQMS!69/1'%+!%2/N/9(2!1C,1!9'20.1!
N9/(!,+!%+1'9+,.!19,+2.,1%/+!%+%1%,1%/+[!1C'!'D/.01%/+,9%.<!@/+2'9D'$!2C/91!%2/N/9(!^ZcS!
,,V!1<6%@,..<!9'N'99'$!1/!,2!iEQMSj`!,+$!,!./+F!Drosophila:/+.<!%2/N/9(!^"Y"R !,,`*!%+!
AC%@C!1C'!2,('!2C/91!,(%+/!,@%$!2'b0'+@'!%2!69'@'$'$!><!,+!4:1'9(%+,.!$/(,%+!
eScg\!EQMS!,NN'@12!',9.<!'(>9</+%@!$'D'./6('+1*!$%NN '9'+1%,1%/+!,+$!(/96C/F'+'2%2!
/N!Drosophila*!C.*elegans*!B'>9,N%2C!,+$!Xenopus!eSc:cSg\!L/02'!EQMS!%2!'22'+1%,.!
N/9!26'9(%/F'+'2%2!ecc:cRg\!!
I+'!/N!1C'!/6'+!b0'21%/+2!%+!1C'!19,+2@9%61%/+,.!9'F0.,1%/+!N%'.$!%2!AC,1!,9'!1C'!
@'..0.,9!N0 +@1%/+2!/N!EQM S\!='26%1'!%12!%(6/91,+@'!%+!$'D'./6('+1*!1C'!@'..0.,9!
69/@'22'2!1C,1!,9'!9'F0.,1'$!><!EQMS!9'(,%+!.,9F'.<!0+$'9'_6./9'$\!E/!%$'+1%N<!,+$!
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.03.27.011288doi: bioRxiv preprint

!
!
!
R!
@C,9,@1 '9%B'!1C '!@'..0.,9!69/@'22'2!1C,1!,9'!9'F0.,1'$!><!EQMS*!A'!02'$!Drosophila!
-SQk!@'..2!,2!,!(/$'.!,+$!3+/@3'$!$/A+! 1C '!'_69'22%/+!/N!EQMS\!X'!$%2@/D'9'$!
1C,1!9'$0@'$!'_69'22%/+!/N!EQMS!^>01!+/1!EO;`!'_'912!$%21%+@1!'NN'@12!/+!8"*!8SdL!
,+$!26'@%N%@!(%1/1%@!6C,2'2*!,2!$'(/+219,1'$!><!b0,+1%1,1%D'!C%FC:1C9/0FC601!
%(,F%+F! N./A!@<1/('19<\!X'!N091C'9!$%2@/D'9'$!1C,1!EQMS!@/+19/.2!1C'!'_69'22%/+! /N!
Cyc*E!,+$!1C'! (%1/1%@!Cyc*A*!Cyc*B!,+$!Cyc*B3*F'+'2\!P2%+F!(,22!26'@19/('19<!
,+,.<2'2!/N!EQMS:%+1'9,@1%+F!69/1'%+2!,+$!,D,%.,>.'!WC?;:'_/!$,1,*!A'!$'(/+219,1'!
1C'!@/:/@@06,+@<!/N!EQMS*!8MGM!^8-E:@/+1,%+%+F!M7JXWa!B%+@:N%+F'9!69/1'%+`!,+$!
L"O;!^(/1%N! "!>%+$%+F!69/1'%+`!%+!1C'!(,l/9%1<!/N!69/(/1'92!>/0+$!><!',@C!/N!1C'!
1C9'' !N,@1/92\!Q'(,93,>.<*!1C'!69/(/1'92!/N!1C'!EQMS:9'F0.,1'$!(%1/1%@!@<@.%+2!,+$!
Cyclin*E*,9'!>/0+$!><!1C'!1C9''!N,@1/92*!AC'9',2!1C'!69/(/1'92!/N!Cyclin*C!,+$!
Cyclin*D*!AC%@C!,9'! +/1!9'F0.,1'$!><!EQMS*!,9'!+/1!>/0+$\!M091C'9(/9'*!1C'!L/1%N!"!
2'b0'+@'!'.'('+1!%2!'+9%@C'$!%+!1C'!69/(/1'92!/N!F'+'2!>/0+$!><!,..!1C9''! 69/1' %+2*!
20FF'21%+F!1C'!%+D/.D'('+1!/N!8MGM!,+$!L"O;!,2!@/:N,@1/92!%+!EQMS:9'F0.,1'$!@'..!
@<@.'!69/F9'22%/+\!L/9'/D'9*!A'!$'(/+219,1'!1C,1!EQMS*!9,1C'9!1C,+!L"O;!/9!
8MGM*!%2!1C'!(,%+!N,@1/9!1C,1!9'F0.,1'2!1C'!'_69'22%/+!/N!1C'!(%1/1%@!@<@.%+2!,+$!
Cyclin*E\!?(6/91,+1.<*!AC%.'!F'+'9,.d>,2,.!19,+2@9%61%/+!N,@1/92!( %FC1!>'!D%'A'$!,2!
C,D%+F!,!2/('AC,1!iF'+'9%@j!9/.'*!/09!N%+$%+F2! '(6C,2%B'!1C'!0+%b0' * !0+,+1%@%6,1'$!
N0+@1%/+2!/N!Drosophila!EQMS!,2!,+!'22'+1%,.!N,@1/9!N /9!@'..!@<@.'!69/F9'22%/+!, +$!
,6/61/1%@!@'..!$',1C\!
$ $
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.03.27.011288doi: bioRxiv preprint

Citations
More filters
Journal ArticleDOI

Role of the TATA-box binding protein (TBP) and associated family members in transcription regulation.

Rabia Mishal, +1 more
- 01 May 2022 - 
TL;DR: A review of the TBP family and their interactions with the TATA-box on DNA can be found in this paper , where three TBP related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2.
Journal ArticleDOI

Functionally distinct promoter classes initiate transcription via different mechanisms reflected in focused versus dispersed initiation patterns

TL;DR: Different promoter classes direct distinct mechanisms of transcription initiation, which relate to different focused versus dispersed initiation patterns, as well as identifying factors that can recruit and/or stabilize TFIIA at housekeeping promoters and activate transcription.
Journal ArticleDOI

The SAGA core module is critical during Drosophila oogenesis and is broadly recruited to promoters

TL;DR: In this article, the role of non-enzymatic core modules during Drosophila oogenesis was analyzed, and it was shown that depletion of SAGA-specific core subunits blocked egg chamber development at earlier stages than depletion of enzymatic subunits.
Posted ContentDOI

Functionally distinct promoter classes initiate transcription via different mechanisms reflected in focused versus dispersed initiation patterns

TL;DR: In this article , the authors used Drosophila melanogaster S2 cells as a model that promoter classes with distinct functions and initiation patterns function via PICs that display different compositions and dependencies: developmental promoter DNA readily associates with the canonical PIC, whereas housekeeping promoter DNA does not and instead recruit different factors such as Dthis article.
References
More filters
Journal ArticleDOI

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Journal ArticleDOI

HTSeq—a Python framework to work with high-throughput sequencing data

TL;DR: This work presents HTSeq, a Python library to facilitate the rapid development of custom scripts for high-throughput sequencing data analysis, and presents htseq-count, a tool developed with HTSequ that preprocesses RNA-Seq data for differential expression analysis by counting the overlap of reads with genes.
Journal ArticleDOI

STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.

TL;DR: The latest version of STRING more than doubles the number of organisms it covers, and offers an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input.
Journal ArticleDOI

MEME Suite: tools for motif discovery and searching

TL;DR: The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps, and all of the motif-based tools are now implemented as web services via Opal.
Journal ArticleDOI

Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation.

TL;DR: It is proposed that the singular phosphorylation of the amino-terminus of histone H3 may be involved in facilitating two key functions during mitosis: (1) regulate protein-protein interactions to promote binding of trans-acting factors that “drive” chromatin condensation as cells enter M-phase and (2) coordinate chromatin decondensation associated with M- phase.
Related Papers (5)