scispace - formally typeset
Open AccessJournal ArticleDOI

Two new p73 splice variants, gamma and delta, with different transcriptional activity.

TLDR
The results suggest that p73 isoforms may be differentially regulated, with four different isoforms capable of interacting among themselves and with p53 and the relative expression level of each splice variant may modulate p73 transcriptional and growth suppression activities by affecting heterodimer formation.
Abstract
p73 has been recently identified as a new structural and functional homologue of the transcription factor p53. It is expressed in either a full-length form, α, or a shorter β mRNA variant, with exon 13 spliced out. Here we report the identification and functional characterization of two new p73 splicing variants, γ (splicing out exon 11) and δ (splicing out exons 11, 12, and 13). Both γ and δ p73 variants are expressed in human peripheral blood lymphocytes, primary keratinocytes, and different tumor cell lines, including neuroblastoma, glioblastoma, melanoma, hepatoma, and leukemia. The expression pattern of the four p73 splicing variants differs in both primary cells of different lineage and established cell lines even within the same type of tumor. A two-hybrid assay was used to characterize the homodimeric and heterodimeric interactions between the p73 variants, and showed that neither p73γ nor p73δ interact with p53, whereas p73γ showed strong interactions with all p73 isoforms, and p73δ binds efficiently p73α and p73γ but only weakly p73β. At the functional level, p73γ is significantly less efficient in activating transcription of the p21Waf1/Cip1 promoter than p53 or p73β, whereas the effect of p73δ is intermediate and comparable to that of p73α. The ability of the different p73 variants to affect cell growth in p53 null osteosarcoma SAOS-2 cells correlates with their transcriptional activity on the p21Waf1/Cip1 promoter: p73β is the most efficient in inhibiting colony formation, whereas p73γ is almost ineffective. Our results suggest that p73 isoforms may be differentially regulated, with four different isoforms capable of interacting among themselves and with p53. The relative expression level of each splice variant may modulate p73 transcriptional and growth suppression activities by affecting heterodimer formation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours

TL;DR: It is shown that mice functionally deficient for all p73 isoforms exhibit profound defects, including hippocampal dysgenesis, hydrocephalus, chronic infections and inflammation, as well as abnormalities in pheromone sensory pathways, and there is a marked divergence in the physiological functions of the p53 family members.
Journal ArticleDOI

The p53/p63/p73 family of transcription factors: overlapping and distinct functions

TL;DR: The p63 and p73 genes are rarely mutated in human cancer, although p73 loss is observed in neuroblastoma and a subtype of T-cell lymphoma, and this family of transcription factors might regulate a common set of genes in response to different extracellular signals and developmental cues.
Journal ArticleDOI

p73: Friend or foe in tumorigenesis

TL;DR: As p53 and its homologue p73 have significant sequence and functional similarities, p73 might also be expected to act as a tumour suppressor, but p73 is activated after DNA damage in a way that is distinct from that of p53.
References
More filters
Journal ArticleDOI

WAF1, a potential mediator of p53 tumor suppression

TL;DR: A gene is identified, named WAF1, whose induction was associated with wild-type but not mutant p53 gene expression in a human brain tumor cell line and that could be an important mediator of p53-dependent tumor growth suppression.
Journal ArticleDOI

p53 mutations in human cancers

TL;DR: The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues as mentioned in this paper.
Journal ArticleDOI

p53, the Cellular Gatekeeper for Growth and Division

TL;DR: The author regrets the lack of citations for many important observations mentioned in the text, but their omission is made necessary by restrictions in the preparation of review manuscripts.
Journal ArticleDOI

Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours

TL;DR: Observations indicate that a normal p53 gene is dispensable for embryonic development, that its absence predisposes the animal to neoplastic disease, and that an oncogenic mutant form of p53 is not obligatory for the genesis of many types of tumours.
Journal ArticleDOI

A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia

TL;DR: Three participants are identified (AT gene(s), p53, and GADD45) in a signal transduction pathway that controls cell cycle arrest following DNA damage; abnormalities in this pathway probably contribute to tumor development.
Related Papers (5)