scispace - formally typeset
Journal ArticleDOI

Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber

Wan-Jian Yin, +2 more
- 10 Feb 2014 - 
- Vol. 104, Iss: 6, pp 063903
Reads0
Chats0
TLDR
In this paper, the defect properties of thin-film solar cells based on Methylammonium triiodideplumbate (CH3NH3PbI3) halide perovskites have been investigated.
Abstract
Thin-film solar cells based on Methylammonium triiodideplumbate (CH3NH3PbI3) halide perovskites have recently shown remarkable performance First-principle calculations show that CH3NH3PbI3 has unusual defect physics: (i) Different from common p-type thin-film solar cell absorbers, it exhibits flexible conductivity from good p-type, intrinsic to good n-type depending on the growth conditions; (ii) Dominant intrinsic defects create only shallow levels, which partially explain the long electron-hole diffusion length and high open-circuit voltage in solar cell The unusual defect properties can be attributed to the strong Pb lone-pair s orbital and I p orbital antibonding coupling and the high ionicity of CH3NH3PbI3

read more

Citations
More filters
Journal ArticleDOI

The emergence of perovskite solar cells

TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Journal ArticleDOI

Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells

TL;DR: The introduction of additional iodide ions into the organic cation solution, which is used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects, enabling the fabrication of PSCs with a certified power conversion efficiency.
Journal ArticleDOI

Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

TL;DR: An antisolvent vapor-assisted crystallization approach is reported that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters, which enabled a detailed characterization of their optical and charge transport characteristics.
Journal ArticleDOI

Surface passivation of perovskite film for efficient solar cells

TL;DR: In this paper, an organic halide salt phenethylammonium iodide (PEAI) was used on HC(NH2)2-CH3NH3 mixed perovskite films for surface defect passivation.
Journal ArticleDOI

Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells

TL;DR: The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitized and organic photovoltaics as discussed by the authors, which can be realized in both mesoporous and thin-film device architectures.
References
More filters
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells

TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Related Papers (5)