scispace - formally typeset
Journal ArticleDOI

Wearable High-Performance Supercapacitors Based on Silver-Sputtered Textiles with FeCo2S4–NiCo2S4 Composite Nanotube-Built Multitripod Architectures as Advanced Flexible Electrodes

TLDR
In this article, a novel flexible electrode with nanotube-built multitripod architectures of ternary metal sulfides' composites (FeCo2S4−NiCo 2S4) on a silver-sputtered textile cloth is presented.
Abstract
To achieve high-performance wearable supercapacitors (SCs), a new class of flexible electrodes with favorable architectures allowing large porosity, high conductivity, and good mechanical stability is strongly needed. Here, this study reports the rational design and fabrication of a novel flexible electrode with nanotube-built multitripod architectures of ternary metal sulfides' composites (FeCo2S4–NiCo2S4) on a silver-sputtered textile cloth. Silver sputtering is applicable to almost all kinds of textiles, and S2− concentration is optimized during sulfidation process to achieve such architectures and also a complete sulfidation assuring high conductivity. New insights into concentration-dependent sulfidation mechanism are proposed. The additive-free FeCo2S4–NiCo2S4 electrode shows a high specific capacitance of 1519 F g−1 at 5 mA cm−2 and superior rate capability (85.1% capacitance retention at 40 mA cm−2). All-solid-state SCs employing these advanced electrodes deliver high energy density of 46 W h kg−1 at 1070 W kg−1 as well as achieve remarkable cycling stability retaining 92% of initial capacitance after 3000 cycles at 10 mA cm−2, and outstanding reliability with no capacitance degradation under large twisting. These are attributed to the components' synergy assuring rich redox reactions, high conductivity as well as highly porous but robust architectures. An almost linear increase in capacitance with devices' area indicates possibility to meet various energy output requirements. This work provides a general, low-cost route to wearable power sources.

read more

Citations
More filters
Journal ArticleDOI

Rational design of integrated CuO@CoxNi1−x(OH)2 nanowire arrays on copper foam for high-rate and long-life supercapacitors

TL;DR: In this article, a flexible asymmetric solid-state supercapacitor (ASC) is fabricated using the optimized CuO@Co0.2Ni0.8(OH)2 as the positive electrode, activated carbon-coated nickel foam as the negative electrode, and polyvinyl alcohol/KOH gel as electrolyte.
Journal ArticleDOI

An agriculture-inspired nanostrategy towards flexible and highly efficient hybrid supercapacitors using ubiquitous substrates

TL;DR: In this paper, a bilayered flower-like Cu1-xNix-O/Ni-P nanoarchitectures are rationally designed on CB paper by facile electroless plating and electrochemical conversion methods, respectively.
Journal ArticleDOI

3D hybrids based on WS2/N, S co-doped reduced graphene oxide: Facile fabrication and superior performance in supercapacitors

TL;DR: In this article, a 3D hierarchical WS2-N,S-rGO hybrid with WS2 nanoflakes interconnected and quantum dots anchored on N and S co-doped reduced graphene oxide crumpled nanosheets is fabricated via a novel, facile and scalable approach, which is based on rapid solution combustion synthesis of the precursor and subsequent gas-solid phase sulfurization.
Journal ArticleDOI

Regulated synthesis of Eutectic Ni3S2/NiS nanorods for quasi-solid-state hybrid supercapacitors with high energy density

TL;DR: In this article, a regulated synthesis of eutectic structured Ni3S2/NiS nanorods was reported, which demonstrated a fantastic electrochemical performance as a freestanding electrode for hybrid SCs.
References
More filters
Journal ArticleDOI

Flexible Energy-Storage Devices: Design Consideration and Recent Progress

TL;DR: This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors, based on carbon materials and a number of composites and flexible micro-supercapacitor.
Journal ArticleDOI

Flexible solid-state supercapacitors: design, fabrication and applications

TL;DR: Flexible solid-state supercapacitors (SCs) have attracted increasing interest because they can provide substantially higher specific/volumetric energy density compared to conventional capacitors.
Journal ArticleDOI

A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol–Gel Process

TL;DR: This work reported the first successful preparation of nickel cobaltite aerogels with the epoxide-driven sol–gel process, which showed an extremely high-specific capacitance of 1400 F g under a mass loading of 0.4 mg cm 2 at a sweep rate of 25mV s.
Journal ArticleDOI

Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties

TL;DR: An anion exchange method is reported to synthesize a complex ternary metal sulfides hollow structure, namely nickel cobalt sulfide ball-in-ball hollow spheres that show long-term cycling performance and potential application in high-performance electrochemical capacitors.
Journal ArticleDOI

Design Hierarchical Electrodes with Highly Conductive NiCo2S4 Nanotube Arrays Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors

TL;DR: The development of highly conductive NiCo2S4 single crystalline nanotube arrays grown on a flexible carbon fiber paper (CFP), which can serve not only as a good pseudocapacitive material but also as a three-dimensional conductive scaffold for loading additional electroactive materials.
Related Papers (5)