scispace - formally typeset
Search or ask a question

Showing papers on "Base pair published in 2004"


Journal ArticleDOI
TL;DR: This review presents the current parameter set available for making accurate DNA structure predictions and also points to future directions for improvement.
Abstract: DNA secondary structure plays an important role in biology, genotyping diagnostics, a variety of molecular biology techniques, in vitro-selected DNA catalysts, nanotechnology, and DNA-based computing. Accurate prediction of DNA secondary structure and hybridization using dynamic programming algorithms requires a database of thermodynamic parameters for several motifs including Watson-Crick base pairs, internal mismatches, terminal mismatches, terminal dangling ends, hairpins, bulges, internal loops, and multibranched loops. To make the database useful for predictions under a variety of salt conditions, empirical equations for monovalent and magnesium dependence of thermodynamics have been developed. Bimolecular hybridization is often inhibited by competing unimolecular folding of a target or probe DNA. Powerful numerical methods have been developed to solve multistate-coupled equilibria in bimolecular and higher-order complexes. This review presents the current parameter set available for making accurate DNA structure predictions and also points to future directions for improvement.

1,249 citations


Journal ArticleDOI
TL;DR: Current understanding of replication fidelity is reviewed, with emphasis on structural and biochemical studies of DNA polymerases that provide new insights into the importance of hydrogen bonding, base pair geometry, and substrate-induced conformational changes to fidelity.

1,137 citations


Journal ArticleDOI
12 Feb 2004-Nature
TL;DR: The design and synthesis of a 1,669-nucleotide, single-stranded DNA molecule that is readily amplified by polymerases and that, in the presence of five 40-mer synthetic oligodeoxynucleotides, folds into an octahedron structure by a simple denaturation–renaturation procedure is reported.
Abstract: Molecular self-assembly offers a means of spontaneously forming complex and well-defined structures from simple components. The specific bonding between DNA base pairs has been used in this way to create DNA-based nanostructures and to direct the assembly of material on the subnanometre to micrometre scale. In principle, large-scale clonal production of suitable DNA sequences and the directed evolution of sequence lineages towards optimized behaviour can be realized through exponential DNA amplification by polymerases. But known examples of three-dimensional geometric DNA objects are not amenable to cloning because they contain topologies that prevent copying by polymerases. Here we report the design and synthesis of a 1,669-nucleotide, single-stranded DNA molecule that is readily amplified by polymerases and that, in the presence of five 40-mer synthetic oligodeoxynucleotides, folds into an octahedron structure by a simple denaturation-renaturation procedure. We use cryo-electron microscopy to show that the DNA strands fold successfully, with 12 struts or edges joined at six four-way junctions to form hollow octahedra approximately 22 nanometres in diameter. Because the base-pair sequence of individual struts is not repeated in a given octahedron, each strut is uniquely addressable by the appropriate sequence-specific DNA binder.

935 citations


Journal ArticleDOI
TL;DR: Kinetic analysis suggests that different regions of the siRNA play distinct roles in the cycle of target recognition, cleavage, and product release, and the position of the scissile phosphate on the target RNA seems to be determined during RISC assembly, before the si RNA encounters its RNA target.
Abstract: The siRNA-directed ribonucleoprotein complex, RISC, catalyzes target RNA cleavage in the RNA interference pathway. Here, we show that siRNA-programmed RISC is a classical Michaelis-Menten enzyme in the presence of ATP. In the absence of ATP, the rate of multiple rounds of catalysis is limited by release of the cleaved products from the enzyme. Kinetic analysis suggests that different regions of the siRNA play distinct roles in the cycle of target recognition, cleavage, and product release. Bases near the siRNA 5′ end disproportionately contribute to target RNA-binding energy, whereas base pairs formed by the central and 3′ regions of the siRNA provide a helical geometry required for catalysis. Finally, the position of the scissile phosphate on the target RNA seems to be determined during RISC assembly, before the siRNA encounters its RNA target.

570 citations


Journal ArticleDOI
16 Jul 2004-Science
TL;DR: The solution structure and dynamics of the complex of a dimeric lac repressor DNA binding domain with nonspecific DNA is reported, showing that the protein-DNA interface of the nonspecial complex is flexible on biologically relevant time scales that may assist in the rapid and efficient finding of the target site.
Abstract: Interaction of regulatory DNA binding proteins with their target sites is usually preceded by binding to nonspecific DNA. This speeds up the search for the target site by several orders of magnitude. We report the solution structure and dynamics of the complex of a dimeric lac repressor DNA binding domain with nonspecific DNA. The same set of residues can switch roles from a purely electrostatic interaction with the DNA backbone in the nonspecific complex to a highly specific binding mode with the base pairs of the cognate operator sequence. The protein-DNA interface of the nonspecific complex is flexible on biologically relevant time scales that may assist in the rapid and efficient finding of the target site.

531 citations


Journal ArticleDOI
TL;DR: It is shown that intracellular transcription of G-rich regions produces novel DNA structures, visible by electron microscopy as large G-loops formed cotranscriptionally, and they contain G4 DNA on one strand and a stable RNA/DNA hybrid on the other.
Abstract: We show that intracellular transcription of G-rich regions produces novel DNA structures, visible by electron microscopy as large (150–500 bp) loops. These G-loops are formed cotranscriptionally, and they contain G4 DNA on one strand and a stable RNA/DNA hybrid on the other. G-loop formation requires a G-rich nontemplate strand and reflects the unusual stability of the rG/dC base pair. G-loops and G4 DNA form efficiently within plasmid genomes transcribed in vitro or in Escherichia coli. These results establish that G4 DNA can form in vivo, a finding with implications for stability and maintenance of all G-rich genomic regions.

468 citations


Journal ArticleDOI
TL;DR: The results from absorption spectral titration and circular dichroism (CD), thermal denaturation and viscosity experiments indicate that the qdppZ and hqdppz complexes bind more avidly than the ip, pip and hpip complexes, and the ammonia co-ligands of the complexes are possibly involved in hydrogen bonding with the intrastrand nucleobases to favour intercalation of the extended aromatic ligands.

451 citations


Journal ArticleDOI
TL;DR: This work provides an unambiguous determination of single DNA conductance and demonstrates different conduction mechanisms for different sequences.
Abstract: We have studied electron transport in DNA duplexes, covalently bonded to two electrodes in aqueous buffer solutions, by repeatedly forming a large number of DNA junctions. The histogram of conductances reveals peaks at integer multiples of a fundamental value, which is used to identify with the conductance of a single DNA molecule. The measured conductance depends on the DNA sequence and length. For (GC)n sequences, the conductance is inversely proportional to the length (greater than eight base pairs). When inserting (A:T)m into GC-rich domains, it decreases exponentially with the length of A:T base pairs (m) with a decay constant of 0.43 A-1. This work provides an unambiguous determination of single DNA conductance and demonstrates different conduction mechanisms for different sequences.

431 citations


Journal ArticleDOI
TL;DR: The crystal structure of the complete 12 subunit RNA polymerase (pol) II bound to a transcription bubble and product RNA reveals incoming template and nontemplate DNA, a seven base pair DNA/RNA hybrid, and three nucleotides each of separating DNA and RNA.

428 citations


Journal ArticleDOI
03 Dec 2004-Science
TL;DR: The crystal structure of a DNA photolyase bound to duplex DNA that is bent by 50° and comprises a synthetic CPD lesion that apparently mimics a structural substate during light-driven DNA repair in which back-flipping of the thymines into duplexDNA has not yet taken place is reported.
Abstract: DNA photolyases use light energy to repair DNA that comprises ultraviolet-induced lesions such as the cis-syn cyclobutane pyrimidine dimers (CPDs). Here we report the crystal structure of a DNA photolyase bound to duplex DNA that is bent by 50 degrees and comprises a synthetic CPD lesion. This CPD lesion is flipped into the active site and split there into two thymines by synchrotron radiation at 100 K. Although photolyases catalyze blue light-driven CPD cleavage only above 200 K, this structure apparently mimics a structural substate during light-driven DNA repair in which back-flipping of the thymines into duplex DNA has not yet taken place.

363 citations


Journal ArticleDOI
01 Aug 2004-RNA
TL;DR: A partition function calculation for RNA secondary structure is presented that uses a current set of nearest neighbor parameters for conformational free energy at 37 degrees C, including coaxial stacking to demonstrate pairs with high probability that are therefore well determined as compared to base pairs with lower probability of pairing.
Abstract: A partition function calculation for RNA secondary structure is presented that uses a current set of nearest neighbor parameters for conformational free energy at 37 degrees C, including coaxial stacking. For a diverse database of RNA sequences, base pairs in the predicted minimum free energy structure that are predicted by the partition function to have high base pairing probability have a significantly higher positive predictive value for known base pairs. For example, the average positive predictive value, 65.8%, is increased to 91.0% when only base pairs with probability of 0.99 or above are considered. The quality of base pair predictions can also be increased by the addition of experimentally determined constraints, including enzymatic cleavage, flavin mono-nucleotide cleavage, and chemical modification. Predicted secondary structures can be color annotated to demonstrate pairs with high probability that are therefore well determined as compared to base pairs with lower probability of pairing.

Journal ArticleDOI
12 Nov 2004-Cell
TL;DR: A third nucleotide binding site that may define the length of backtracked RNA; DNA double helix unwinding in advance of the polymerase active center; and extension of the diffraction limit of RNA polymerase II crystals to 2.3 A.

Journal ArticleDOI
12 Feb 2004-Nature
TL;DR: The use of disulphide crosslinking is reported to obtain high-resolution crystal structures of MutY–DNA lesion-recognition complexes that reveal the basis for recognizing both lesions in the A·oxoG pair and for catalysing removal of the adenine base.
Abstract: The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base.

Journal ArticleDOI
15 Jul 2004-Nature
TL;DR: Hogsteen base-pairing offers a basis for the varied efficiencies and fidelities of hPolι opposite different template bases, and it provides an elegant mechanism for promoting replication through minor-groove purine adducts that interfere with replication.
Abstract: Almost all DNA polymerases show a strong preference for incorporating the nucleotide that forms the correct Watson–Crick base pair with the template base. In addition, the catalytic efficiencies with which any given polymerase forms the four possible correct base pairs are roughly the same. Human DNA polymerase-ι (hPolι), a member of the Y family of DNA polymerases, is an exception to these rules. hPolι incorporates the correct nucleotide opposite a template adenine with a several hundred to several thousand fold greater efficiency than it incorporates the correct nucleotide opposite a template thymine, whereas its efficiency for correct nucleotide incorporation opposite a template guanine or cytosine is intermediate between these two extremes1,2,3,4,5. Here we present the crystal structure of hPolι bound to a template primer and an incoming nucleotide. The structure reveals a polymerase that is ‘specialized’ for Hoogsteen base-pairing, whereby the templating base is driven to the syn conformation. Hoogsteen base-pairing offers a basis for the varied efficiencies and fidelities of hPolι opposite different template bases, and it provides an elegant mechanism for promoting replication through minor-groove purine adducts that interfere with replication.

Journal ArticleDOI
TL;DR: It is concluded that a variety of sss nucleases and extracts can be effectively used for high-throughput mutation and polymorphism discovery and single-base mismatches are the least accessible because they present the smallest single-stranded region for enzyme binding.
Abstract: We have investigated the ability of single-strand specific (sss) nucleases from different sources to cleave single base pair mismatches in heteroduplex DNA templates used for mutation and single-nucleotide polymorphism analysis. The TILLING (Targeting Induced Local Lesions IN Genomes) mismatch cleavage protocol was used with the LI-COR gel detection system to assay cleavage of amplified heteroduplexes derived from a variety of induced mutations and naturally occurring polymorphisms. We found that purified nucleases derived from celery (CEL I), mung bean sprouts and Aspergillus (S1) were able to specifically cleave nearly all single base pair mismatches tested. Optimal nicking of heteroduplexes for mismatch detection was achieved using higher pH, temperature and divalent cation conditions than are routinely used for digestion of single-stranded DNA. Surprisingly, crude plant extracts performed as well as the highly purified preparations for this application. These observations suggest that diverse members of the S1 family of sss nucleases act similarly in cleaving non-specifically at bulges in heteroduplexes, and single-base mismatches are the least accessible because they present the smallest single-stranded region for enzyme binding. We conclude that a variety of sss nucleases and extracts can be effectively used for high-throughput mutation and polymorphism discovery.

Journal ArticleDOI
TL;DR: The PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures for synthesis of long segments of DNA with high G + C contents, repetitive sequences or complex secondary structures.
Abstract: Chemical synthesis of DNA sequences provides a powerful tool for modifying genes and for studying gene function, structure and expression. Here, we report a simple, high-fidelity and cost-effective PCR-based two-step DNA synthesis (PTDS) method for synthesis of long segments of DNA. The method involves two steps. (i) Synthesis of individual fragments of the DNA of interest: ten to twelve 60mer oligonucleotides with 20 bp overlap are mixed and a PCR reaction is carried out with high-fidelity DNA polymerase Pfu to produce DNA fragments that are approximately 500 bp in length. (ii) Synthesis of the entire sequence of the DNA of interest: five to ten PCR products from the first step are combined and used as the template for a second PCR reaction using high-fidelity DNA polymerase pyrobest, with the two outermost oligonucleotides as primers. Compared with the previously published methods, the PTDS method is rapid (5-7 days) and suitable for synthesizing long segments of DNA (5-6 kb) with high G + C contents, repetitive sequences or complex secondary structures. Thus, the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures. Using the newly developed PTDS method, we have successfully obtained several genes of interest with sizes ranging from 1.0 to 5.4 kb.

Journal ArticleDOI
TL;DR: A full set of DNA stacking parameters has been determined for the first time and the contribution of base-pairing into duplex stability has been estimated.

Journal ArticleDOI
TL;DR: The design of novel base-discriminating fluorescent (BDF) nucleobases and their application to single nucleotide polymorphism (SNP) typing are described and it is suggested that the high polarity near the pyrenecarboxamide group is responsible for the strong A-selective fluorescence emission.
Abstract: This paper describes the design of novel base-discriminating fluorescent (BDF) nucleobases and their application to single nucleotide polymorphism (SNP) typing. We devised novel BDF nucleosides, (Py)U and (Py)C, which contain a pyrenecarboxamide chromophore connected by a propargyl linker. The fluorescence spectrum of the duplex containing a (Py)U/A base pair showed a strong emission at 397 nm on 327 nm excitation. In contrast, the fluorescence of duplexes containing (Py)U/N base pairs (N = C, G, or T) was considerably weaker. The proposed structure of the duplex containing a matched (Py)U/A base pair suggests that the high polarity near the pyrenecarboxamide group is responsible for the strong A-selective fluorescence emission. Moreover, the fluorescence of the duplex containing a (Py)U/A base pair was not quenched by a flanking C/G base pair. The fluorescence properties are quite different from previous BDF nucleobases, where fluorescence is quenchable by flanking C/G base pairs. The duplex containing the C derivative, (Py)C, selectively emitted fluorescence when the base opposite (Py)C was G. The drastic change of fluorescence intensity by the nature of the complementary base is extremely useful for SNP typing. (Py)U- and (Py)C-containing oligodeoxynucleotides acted as effective reporter probes for homogeneous SNP typing of DNA samples containing c-Ha-ras and BRCA2 SNP sites.

Journal ArticleDOI
TL;DR: The MitoChip is a high-throughput sequencing tool for the reliable identification of mitochondrial DNA mutations from primary tumors in clinical samples and detected at least one cancer-associated mitochondrial mutation in six (66%) of nine samples.
Abstract: Somatic mitochondrial mutations are common in human cancers, and can be used as a tool for early detection of cancer. We have developed a mitochondrial Custom Reseq microarray as an array-based sequencing platform for rapid and high-throughput analysis of mitochondrial DNA. The MitoChip contains oligonucleotide probes synthesized using standard photolithography and solid-phase synthesis, and is able to sequence >29 kb of double-stranded DNA in a single assay. Both strands of the entire human mitochondrial coding sequence (15,451 bp) are arrayed on the MitoChip; both strands of an additional 12,935 bp (84% of coding DNA) are arrayed in duplicate. We used 300 ng of genomic DNA to amplify the mitochondrial coding sequence in three overlapping long PCR fragments. We then sequenced >2 million base pairs of mitochondrial DNA, and successfully assigned base calls at 96.0% of nucleotide positions. Replicate experiments demonstrated >99.99% reproducibility. In matched fluid samples (urine and pancreatic juice, respectively) obtained from five patients with bladder cancer and four with pancreatic cancer, the MitoChip detected at least one cancer-associated mitochondrial mutation in six (66%) of nine samples. The MitoChip is a high-throughput sequencing tool for the reliable identification of mitochondrial DNA mutations from primary tumors in clinical samples.

Journal ArticleDOI
04 Mar 2004-Nature
TL;DR: The efficiency and fidelity of dimer bypass is determined and it is shown that Pol η copies thymine dimers and the flanking bases with higher processivity than it copies undamaged DNA, and then switches to less processive synthesis.
Abstract: Human DNA polymerase eta (Pol eta) modulates susceptibility to skin cancer by promoting DNA synthesis past sunlight-induced cyclobutane pyrimidine dimers that escape nucleotide excision repair (NER). Here we have determined the efficiency and fidelity of dimer bypass. We show that Pol eta copies thymine dimers and the flanking bases with higher processivity than it copies undamaged DNA, and then switches to less processive synthesis. This ability of Pol eta to sense the dimer location as synthesis proceeds may facilitate polymerase switching before and after lesion bypass. Pol eta bypasses a dimer with low fidelity and with higher error rates at the 3' thymine than at the 5' thymine. A similar bias is seen with Sulfolobus solfataricus DNA polymerase 4, which forms a Watson-Crick base pair at the 3' thymine of a dimer but a Hoogsteen base pair at the 5' thymine (ref. 3). Ultraviolet-induced mutagenesis is also higher at the 3' base of dipyrimidine sequences. Thus, in normal people and particularly in individuals with NER-defective xeroderma pigmentosum who accumulate dimers, errors made by Pol eta during dimer bypass could contribute to mutagenesis and skin cancer.

Journal ArticleDOI
TL;DR: It is shown that the Est1p-binding domain of the RNA can be moved to three distant locations with retention of telomerase function in vivo, and it is proposed that the RNA serves a very different function, providing a flexible tether for the protein subunits.
Abstract: In the yeast Saccharomyces cerevisiae, distinct regions of the 1.2-kb telomerase RNA (TLC1) bind to the catalytic subunit Est2p and to accessory proteins. In particular, a bulged stem structure binds the essential regulatory subunit Est1p. We now show that the Est1p-binding domain of the RNA can be moved to three distant locations with retention of telomerase function in vivo. We present the Est1p relocation experiment in the context of a working model for the secondary structure of the entire TLC1 RNA, based on thermodynamic considerations and comparative analysis of sequences from four species. The model for TLC1 has three long quasihelical arms that bind the Ku, Est1p, and Sm proteins. These arms emanate from a central catalytic core that contains the template and Est2p-binding region. Deletion mutagenesis provides evidence that the Sm arm exists in vivo and can be shortened by 42 predicted base pairs with retention of function; therefore, precise positioning of Sm proteins, like Est1p, is not required within telomerase. In the best-studied ribonucleoprotein enzyme, the ribosome, the RNAs have specific three-dimensional structures that orient the functional elements. In the case of yeast telomerase, we propose that the RNA serves a very different function, providing a flexible tether for the protein subunits.

Journal ArticleDOI
TL;DR: The refined crystal structure of an active Tetrahymena ribozyme in the absence of its RNA substrate is reported, providing a picture of how the ribo enzyme active site positions both a catalytic metal ion and the nucleophilic guanosine for catalysis prior to binding itsRNA substrate.

Journal ArticleDOI
TL;DR: It is argued that for short molecules, the formation of a few base pairs of single-stranded DNA can provide a "flexible hinge" that facilitates loop formation.
Abstract: Recent experiments indicate that double-stranded DNA molecules of approximately 100 base pairs in length have a probability of cyclization which is up to 10(5) times larger than that expected based on the known bending modulus of the double-helix. We argue that for short molecules, the formation of a few base pairs of single-stranded DNA can provide a "flexible hinge" that facilitates loop formation. A detailed calculation shows that this mechanism explains the experimental data.

Journal ArticleDOI
TL;DR: The canonical CS-B was nonessential for the generation of subgenomic mRNAs (sgmRNAs), but its presence led to transcription levels at least 103-fold higher than those in its absence.
Abstract: Coronavirus transcription leads to the synthesis of a nested set of mRNAs with a leader sequence derived from the 5' end of the genome. The mRNAs are produced by a discontinuous transcription in which the leader is linked to the mRNA coding sequences. This process is regulated by transcription-regulating sequences (TRSs) preceding each mRNA, including a highly conserved core sequence (CS) with high identity to sequences present in the virus genome and at the 3' end of the leader (TRS-L). The role of TRSs was analyzed by reverse genetics using a full-length infectious coronavirus cDNA and site-directed mutagenesis of the CS. The canonical CS-B was nonessential for the generation of subgenomic mRNAs (sgmRNAs), but its presence led to transcription levels at least 10(3)-fold higher than those in its absence. The data obtained are compatible with a transcription mechanism including three steps: (i) formation of 5'-3' complexes in the genomic RNA, (ii) base-pairing scanning of the nascent negative RNA strand by the TRS-L, and (iii) template switching during synthesis of the negative strand to complete the negative sgRNA. This template switch takes place after copying the CS sequence and was predicted in silico based on high base-pairing score between the nascent negative RNA strand and the TRS-L and minimum DeltaG.

Journal ArticleDOI
TL;DR: The hole-transport efficiency observed for the mixed sample of logic gate strands exhibited an OR logic behavior, generally applicable to the design of other complicated combinational logic circuits such as the full-adder.
Abstract: A conceptually new logic gate based on DNA has been devised. Methoxybenzodeazaadenine (MDA), an artificial nucleobase which we recently developed for efficient hole transport through DNA, formed stable base pairs with T and C. However, a reasonable hole-transport efficiency was observed in the reaction for the duplex containing an MDA/T base pair, whereas the hole transport was strongly suppressed in the reaction using a duplex where the base opposite MDA was replaced by C. The influence of complementary pyrimidines on the efficiency of hole transport through MDA was quite contrary to the selectivity observed for hole transport through G. The orthogonality of the modulation of these hole-transport properties by complementary pyrimidine bases is promising for the design of a new molecular logic gate. The logic gate system was executed by hole transport through short DNA duplexes, which consisted of the “logic gate strand”, containing hole-transporting nucleobases, and the “input strand”, containing pyrimid...

Journal ArticleDOI
TL;DR: The thermodynamics of DNA duplex structures in the presence of high concentrations of cosolutes in solution were investigated to discern nucleic acid structures and functions in living cells, and it was revealed that the decrease of water activity is the primary factor for destabilization of the short (8-mer) duplex by addition of high molecular weight PEGs as well as low molecular weight Cosolutes.
Abstract: The thermodynamics of DNA duplex structures in the presence of high concentrations of cosolutes in solution were investigated to discern nucleic acid structures and functions in living cells. In the presence of ethylene glycol (EG) and poly(ethylene glycol) (PEG) (MW = 200−8000), the stability of the oligomer DNA duplexes with differing nucleotide length varied, depending on the nucleotide length as well as the size of PEG. It was also revealed that the decrease of water activity is the primary factor for destabilization of the short (8-mer) duplex by addition of high molecular weight PEGs as well as low molecular weight PEGs and other low molecular weight cosolutes. In addition, the number of water molecules taken up per base pair formation was the same for all the PEGs and for 1,2-dimethoxyethane, which was greater than in the cases of glycerol, EG, 1,3-propanediol, and 2-methoxyethanol, suggesting that the solvation of nucleotides may differ, depending on the cosolute structure. These findings are usef...

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: These findings support a structural RNA switch mechanism for genome encapsidation, in which protein binding sites are sequestered by base pairing in the monomeric RNA and become exposed upon dimerization to promote packaging of a diploid genome.
Abstract: All retroviruses specifically package two copies of their genomes during virus assembly, a requirement for strand-transfer-mediated recombination during reverse transcription1,2. Genomic RNA exists in virions as dimers, and the overlap of RNA elements that promote dimerization and encapsidation suggests that these processes may be coupled3,4,5. Both processes are mediated by the nucleocapsid domain (NC) of the retroviral Gag polyprotein3. Here we show that dimerization-induced register shifts in base pairing within the Ψ-RNA packaging signal of Moloney murine leukaemia virus (MoMuLV) expose conserved UCUG elements that bind NC with high affinity (dissociation constant = 75 ± 12 nM). These elements are base-paired and do not bind NC in the monomeric RNA. The structure of the NC complex with a 101-nucleotide ‘core encapsidation’ segment of the MoMuLV Ψ site6 reveals a network of interactions that promote sequence- and structure-specific binding by NC's single CCHC zinc knuckle. Our findings support a structural RNA switch mechanism for genome encapsidation, in which protein binding sites are sequestered by base pairing in the monomeric RNA and become exposed upon dimerization to promote packaging of a diploid genome.

Journal ArticleDOI
TL;DR: The methods developed here should permit the rapid and efficient disruption of any bacterial gene, the computational analysis provides new insight into group II intron target site recognition, and the set of E.coli DExH/D-box protein and DNA helicase disruptants should be useful for analyzing the function of these proteins.

Journal ArticleDOI
TL;DR: This work proposes that CT occurs within DNA assemblies possessing specific, well-coupled conformations of the DNA bases, CT-active domains, accessed through base motion, and examines the temperature dependence of the yield of CT between photoexcited 2-aminopurine and G through DNA bridges of varied length and sequence.
Abstract: The role of base motions in delocalization and propagation of charge through double helical DNA must be established experimentally and incorporated into mechanistic descriptions of DNA-mediated charge transport (CT). Here, we address these fundamental issues by examining the temperature dependence of the yield of CT between photoexcited 2-aminopurine (Ap*) and G through DNA bridges of varied length and sequence. DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)_nG (n = 0−9, 3.4−34 A) and mixed bridges, ApAAIAG and ApATATG. CT was monitored through fluorescence quenching of Ap* by G and through HPLC analysis of photolyzed DNA assemblies containing Ap and the modified guanine, N_2-cyclopropylguanosine (^(CP)G); upon oxidation, the ^(CP)G radical cation undergoes rapid ring opening. First, we find that below the duplex melting temperature (∼60 °C), the yield of CT through duplex DNA increases with increasing temperature governed by the length and sequence of the DNA bridge. Second, the distance dependence of CT is regulated by temperature; enhanced DNA base fluctuations within duplex DNA extend CT to significantly longer distances, here up to 34 A in <10 ns. Third, at all temperatures the yield of CT does not exhibit a simple distance dependence; an oscillatory component, with a period of ∼4−5 base pairs, is evident. These data cannot be rationalized by superexchange, hopping of a localized charge injected into the DNA bridge, a temperature-induced transition from superexchange to thermally induced hopping, or by phonon-assisted polaron hopping. Instead, we propose that CT occurs within DNA assemblies possessing specific, well-coupled conformations of the DNA bases, CT-active domains, accessed through base motion. CT through DNA is described as conformationally gated hopping among stacked domains. Enhanced DNA base motions lead to longer range CT with a complex distance dependence that reflects the roles of coherent dynamics and charge delocalization through transient domains. Consequently, DNA CT is not a simple function of distance but is intimately related to the dynamical structure of the DNA bridge.

Journal ArticleDOI
TL;DR: Characterization of the nsp13-associated nucleoside triphosphatase (NTPase) activities revealed that all natural ribonucleotides and nucleotides are substrates of nsp 13, with ATP, dATP, and GTP being hydrolyzed most efficiently.
Abstract: The human coronavirus 229E (HCoV-229E) replicase gene-encoded nonstructural protein 13 (nsp13) contains an N-terminal zinc-binding domain and a C-terminal superfamily 1 helicase domain. A histidine-tagged form of nsp13, which was expressed in insect cells and purified, is reported to unwind efficiently both partial-duplex RNA and DNA of up to several hundred base pairs. Characterization of the nsp13-associated nucleoside triphosphatase (NTPase) activities revealed that all natural ribonucleotides and nucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed most efficiently. Using the NTPase active site, HCoV-229E nsp13 also mediates RNA 5'-triphosphatase activity, which may be involved in the capping of viral RNAs.