scispace - formally typeset
Search or ask a question

Showing papers on "Bovine serum albumin published in 2011"


Journal ArticleDOI
22 Feb 2011-Langmuir
TL;DR: The adsorption and conformation of bovine serum albumin (BSA) on gold nanoparticles (AuNPs) were interrogated both qualitatively and quantitatively via complementary physicochemical characterization methods.
Abstract: The adsorption and conformation of bovine serum albumin (BSA) on gold nanoparticles (AuNPs) were interrogated both qualitatively and quantitatively via complementary physicochemical characterization methods. Dynamic light scattering (DLS), asymmetric-flow field flow fractionation (AFFF), fluorescence spectrometry, and attenuated total reflectance−Fourier transform infrared (ATR-FTIR) spectroscopy were combined to characterize BSA−AuNP conjugates under fluid conditions, while conjugates in the aerosol state were characterized by electrospray-differential mobility analysis (ES-DMA). The presence of unbound BSA molecules interferes with DLS analysis of the conjugates, particularly as the AuNP size decreases (i.e., below 30 nm in diameter). Under conditions where the γ value is high, where γ is defined as the ratio of scattering intensity by AuNPs to the scattering intensity by unbound BSA, DLS size results are consistent with results obtained after fractionation by AFFF. Additionally, the AuNP hydrodynamic s...

370 citations


Journal ArticleDOI
TL;DR: POZ has the desired drug delivery properties for a new biopolymer and was able to successfully attenuate the immunogenic properties of BSA, like PEG.

359 citations


Journal ArticleDOI
TL;DR: In this article, the role of the pH and the nature of the reducing agent to the size and the oxidation state of metal clusters was investigated in the presence of noble metal nanoclusters.
Abstract: Fluorescent noble metal (Au, Ag) nanoclusters have been biolabeled to bovine serum albumin (BSA) by wet chemistry. Spectroscopic and fluorescence investigations relate the role of the pH and the nature of the reducing agent to the size and the oxidation state of metal clusters. Blue-emitting (λ = 450 nm) small gold nanoclusters (eight atoms) prepared at pH 8 weakly bonded to BSA grow at higher pH to form red-emitting (λ = 690 nm) bigger clusters (25 atoms) covalently bonded to BSA via the sulfur group. X-ray photoelectron spectroscopy (XPS) measurements indicate the presence of Au(I) only for the big clusters. Small silver nanoclusters labeled to the protein with a fluorescence emission in the red region are synthesized in the presence of a strong reducing agent and present only Ag(0). Steady-state and lifetime measurements confirm the crucial impact of the size and the oxidation state of Au(I) on the stabilization of the metal core inside the protein and on the presence of a long lifetime component (τ > ...

342 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the influence of PEG capping density on the stability of washed and dried AuNPs in: water, phosphate-buffered saline solution (PBS), phosphate buffering saline solution containing bovine serum albumin (BSA), and dichloromethane (DCM).
Abstract: Thiol-terminated polyethylene glycol (PEG) is commonly used to functionalize the surface of gold nanoparticles (AuNPs) in order to improve their in vivo stability and to avoid uptake by the reticular endothelial system. Although it has been reported that AuNPs functionalized with tethered PEG are stable in biological media, the influence of chain density remains unclear. This study investigates the influence of PEG capping density on the stability of washed and dried AuNPs in: water, phosphate-buffered saline solution (PBS), phosphate-buffered saline solution containing bovine serum albumin (PBS/BSA), and dichloromethane (DCM). PEG coating had a dramatic effect on stability enabling stable suspensions to be produced in all the media studied. A linear relationship was observed between capping density and stability in water and DCM with a somewhat lower stability observed in PBS and PBS/BSA. A maximum PEG loading level of ∼14 wt.% was achieved, equivalent to a PEG surface density of ∼1.13 chains/nm2.

325 citations


Journal ArticleDOI
TL;DR: Assay on the cytotoxicity of Co, Ni and Cu hydrazone complexes against HeLa tumor cells and NIH 3T3 normal cells revealed that the complexes are toxic only against tumor cells but not to normal cells.

271 citations


Journal ArticleDOI
TL;DR: The fluorescence data showed that tartrazine could bind to the two SAs to form a complex, and the binding process was a spontaneous molecular interaction procedure, in which van der Waals and hydrogen bond interactions played a major role.
Abstract: Tartrazine is an artificial azo dye commonly used in food products. The present study evaluated the interaction of tartrazine with two serum albumins (SAs), human serum albumin (HSA) and bovine serum albumin (BSA), under physiological conditions by means of fluorescence, three-dimensional fluorescence, UV-vis absorption, and circular dichroism (CD) techniques. The fluorescence data showed that tartrazine could bind to the two SAs to form a complex. The binding process was a spontaneous molecular interaction procedure, in which van der Waals and hydrogen bond interactions played a major role. Additionally, as shown by the UV-vis absorption, three-dimensional fluorescence, and CD results, tartrazine could lead to conformational and some microenvironmental changes of both SAs, which may affect the physiological functions of SAs. The work provides important insight into the mechanism of toxicity of tartrazine in vivo.

219 citations


Journal ArticleDOI
27 Oct 2011-ACS Nano
TL;DR: By providing gold ions at specific time of the reaction, monodispersed clusters with enhanced luminescence could be obtained, and the available quantity of free protein could be utilized efficiently.
Abstract: We show that the time-dependent biomineralization of Au3+ by native lactoferrin (NLf) and bovine serum albumin (BSA) resulting in near-infrared (NIR) luminescent gold quantum clusters (QCs) occurs through a protein-bound Au1+ intermediate and subsequent emergence of free protein. The evolution was probed by diverse tools, principally, using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). The importance of alkaline pH in the formation of clusters was probed. At neutral pH, a Au1+–protein complex was formed (starting from Au3+) with the binding of 13–14 gold atoms per protein. When the pH was increased above 12, these bound gold ions were further reduced to Au(0) and nucleation and growth of cluster commenced, which was corroborated by the beginning of emission; at this point, the number of gold atoms per protein was ∼25, suggesting the formation of Au25. During the cluster evolution, at certain time i...

217 citations


Journal ArticleDOI
TL;DR: It is found that the fluorescence of BSA at λ(ex) 230 nm arising from aromatic amino acids Trp and Tyr is almost as sensitive as that achieved at η 280 nm for elucidating the protein conformational changes, which provides a valid and new probe for the investigation of binding kinetics between molecules/ions and proteins.
Abstract: The interactions of imidazolium ionic liquids (ILs), i.e., dibutylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, and 1-butyl-3-methylimidazolium nitrate, with bovine serum albumin (BSA) were studied by monitoring the spectral behaviors of IL-BSA aqueous systems. The intrinsic fluorescence of BSA at 340 nm excited at 230 nm is obviously quenched by these ILs due to complex dynamic collision and their quenching constants are at the order of 10(2) L mol(-1). However, no fluorescence quenching is observed within the same region when excited at 280 nm, which is widely used for probing protein conformations. Thermodynamic investigations reveal that the combination between ILs and BSA is entropy driven by predominantly hydrophobic and electrostatic interactions, leading to the unfolding of polypeptides within BSA. The influence of the ILs on the conformation of BSA follows a sequence of BmimNO(3) > BmimCl ≈ BbimCl. Molecular docking shows that cationic imidazolium moieties of ILs enter the subdomains of protein and interact with the hydrophobic residues of domain III. An agreement between fluorescence spectroscopic investigations and molecular docking is reached. It is found that the fluorescence of BSA at λ(ex) 230 nm arising from aromatic amino acids Trp and Tyr is almost as sensitive as that achieved at λ(ex) 280 nm for elucidating the protein conformational changes, which provides a valid and new probe for the investigation of binding kinetics between molecules/ions and proteins.

213 citations


Journal ArticleDOI
TL;DR: The analysis of fluorescence spectrum and fluorescence intensity indicates that SNPs have a strong ability to quench the intrinsic fluorescence of BSA by both static and dynamic quenching mechanisms.
Abstract: The interaction between silver nanoparticles (SNPs) and Bovine Serum Albumin (BSA) was investigated at physiological pH in an aqueous solution using fluorescence spectroscopy. The analysis of fluorescence spectrum and fluorescence intensity indicates that SNPs have a strong ability to quench the intrinsic fluorescence of BSA by both static and dynamic quenching mechanisms. Resonance light scattering (RLS) spectra indicated the formation of a complex between BSA and SNP. The number of binding sites 'n' and binding constants 'K' were determined at different temperatures based on fluorescence quenching. The thermodynamic parameters namely ∆H°, ∆G°, ∆S° were calculated at different temperatures and the results indicate that hydrophobic forces are predominant in the SNP-BSA complex. Negative ∆G° values imply that the binding process is spontaneous. Synchronous fluorescence spectra showed a blue shift which is indicative of increasing hydrophobicity.

205 citations


Journal ArticleDOI
TL;DR: Results indicate that the binding of baicalein to BSA causes apparent change in the secondary structure of BSA, but does not affect the polarity around the chromophore molecule.

198 citations


Journal ArticleDOI
17 May 2011-Langmuir
TL;DR: The present work highlights the differential response of a protein depending on the nature of the nanostructure and its surface chemistry, which need to be modulated for controlling the biological responses of nanostructures for their potential biomedical applications.
Abstract: Nanoparticles exposed to biofluids become coated with proteins, thus making protein–nanoparticle interactions of particular interest. The consequence on protein conformation and activity depends upon the extent of protein adsorption on the nanoparticle surface. We report the interaction of bovine serum albumin (BSA) with gold nanostructures, particularly gold nanoparticles (GNP) and gold nanorods (GNR). The difference in the geometry and surface properties of nanoparticles is manifested during complexation in terms of different binding modes, structural changes, thermodynamic parameters, and the activity of proteins. BSA is found to retain native-like structure and properties upon enthalpy-driven BSA–GNP complexation. On the contrary, the entropically favored BSA–GNR complexation leads to substantial loss in protein secondary and tertiary structures with the release of a large amount of bound water, as indicated by isothermal calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared (FTIR...

Journal ArticleDOI
TL;DR: In this paper, a method to prepare thin, molecularly imprinted polymer (MIP) coatings on magnetic Fe3O4 nanoparticles (NPs) with a uniform core-shell structure for the recognition and enrichment of protein was developed.
Abstract: A general method to prepare thin, molecularly imprinted polymer (MIP) coatings on magnetic Fe3O4 nanoparticles (NPs) with a uniform core–shell structure for the recognition and enrichment of protein was developed. Four proteins (bovine serum albumin (BSA, pI = 4.9), bovine hemoglobin (BHb, pI = 6.9), bovine pancreas ribonuclease A (RNase A, pI = 9.4) and lysozyme (Lyz, pI = 11.2)) with different isoelectric points were chosen as the templates. The magnetic protein-MIPs were synthesized by combining surface imprinting and sol–gel techniques. The morphology, adsorption and recognition properties of the magnetic molecularly imprinted NPs were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy and through the use of a vibrating sample magnetometer (VSM). In comparison with the use of Lyz, BSA and RNase A as template proteins, BHb-imprinted Fe3O4 showed the best imprinting effect and the highest adsorption capacity among the four proteins. The as-prepared Fe3O4@BHb-MIPs NPs with a mean diameter of 230 nm were coated with an MIP shell that was 10 nm thick, which enabled the Fe3O4@BHb-MIPs to easily reach adsorption equilibrium. A high magnetic saturation value of 25.47 emu g−1 for Fe3O4@BHb-MIPs NPs was obtained, which endowed the adsorbent with the convenience of magnetic separation under an external magnetic field. The resultant Fe3O4@BHb-MIPs NPs could not only selectively extract a target protein from mixed proteins but also specifically capture the protein BHb from a real sample of bovine blood. In addition, different batches of magnetic MIPs showed good reproducibility and reusability for at least six repeated cycles.

Journal ArticleDOI
TL;DR: In this paper, bovine serum albumin (BSA) nanoparticles were prepared using a modified desolvation method and the surface-area-to-volume-ratio was calculated.

Journal ArticleDOI
TL;DR: The findings suggest that the conformational conversion occurs in the oligomers that serve as precursors to amyloid fibrils and precedes the overall fibrillar growth.
Abstract: We have investigated the fibrillation propensity of different conformational isomers of an archetypal, all α-helical protein, namely, bovine serum albumin (BSA), under different pH conditions and ionic strengths using fluorescence and circular dichroism (CD) spectroscopy. At low pH and higher protein concentration, the partially folded conformers associate to form oligomers that are converted into ordered amyloid-like fibrils when incubated at elevated temperature. We have elucidated the mechanism of fibril formation, especially the early steps, by monitoring the kinetics of structural changes during the aggregation process. Various structural probes in tandem were utilized to decipher the temporal evolution of both conformational and size changes by measuring the time dependence of fluorescence intensity and anisotropy of intrinsic tryptophans and several extrinsic fluorophores during the aggregation. Additionally, CD spectroscopy was utilized to monitor the changes in protein secondary structural content during fibrillation. Our findings suggest that the conformational conversion occurs in the oligomers that serve as precursors to amyloid fibrils and precedes the overall fibrillar growth.

Journal ArticleDOI
TL;DR: In this paper, the interaction of 2- tert -butylhydroquinone (TBHQ) and bovine serum albumin (BSA) was investigated by spectrophotometry, spectrofluorimetry, circular dichroism (CD) and FT-IR techniques.

Journal ArticleDOI
TL;DR: In this paper, the corrosion behavior of AISI 316L, wrought Co-28Cr-6Mo and Ti-6Al-4V was studied in aerated solutions of phosphate buffered saline (PBS) at various concentrations of bovine serum albumin (BSA) at 37°C.

Journal ArticleDOI
TL;DR: Very weak interactions between Subtilisin Carlsberg and silica NPs were revealed by centrifugation-based separations and further supported by small-angle X-ray scattering, while bovine serum albumin was used as strongly interacting reference as discussed by the authors.
Abstract: Weak protein-nanoparticle (NP) interactions are studied in a low binding regime as a model for the soft protein corona around nanoparticles in complex biological fluids. Noncovalent, reversible interactions between Subtilisin Carlsberg (SC) and silica NPs shows significant alteration in conformation and enzymatic activity in a NP-size dependent manner. Very weak interactions between SC and silica NPs were revealed by centrifugation-based separations and further supported by small-angle X-ray scattering, while bovine serum albumin was used as a strongly interacting reference. Secondary and tertiary structure changes of SC were studied via circular dichroism and correlated to enzymatic activity where the enzyme kinetics showed a critical role for nanoparticle size.

Journal ArticleDOI
TL;DR: In this article, the luminescent Ag15 clusters confined in bovine serum albumin (BSA) have been prepared by a simple wet chemical route, exhibiting a maximum at 685 nm, is observable to the naked eye.
Abstract: Luminescent Ag15 clusters confined in bovine serum albumin (BSA) have been prepared by a simple wet chemical route. The luminescence, exhibiting a maximum at 685 nm, is observable to the naked eye. The chemical composition of these clusters was analyzed using matrix assisted laser desorption ionization mass spectrometry (MALDI MS), X-ray photoelectron spectroscopy (XPS), and energy dispersive analysis of X-rays (EDAX). Intact Ag15@BSA is observed by MALDI MS. Multiple charge states of the cluster are observed confirming the mass assignment. The clusters showed a quantum yield of 10.71% in water and the luminescence was stable in a pH range of 1–12. Stability of the clusters was enhanced by the addition of polyvinylpyrrolidone (PVP). The clusters showed luminescence in the solid state as well. Evolution of clusters with variation in the amount of reducing agent added shows that the cluster formation goes through an intermediate state of bound silver, formed instantaneously after the addition of Ag+, which transforms to the cluster. High yield synthesis and exciting photophysical properties make our new material interesting for various applications such as biolabeling and imaging.

Journal ArticleDOI
TL;DR: Data of UV-Vis and Circular dichroism suggested that with the increasing amount of Ag(+), the secondary structure undergoes a decrease in α-helix and an increase in β content and the backbone of BSA experiences a micro-environmental alteration.

Journal ArticleDOI
TL;DR: An effective curcumin-albumin nanoparticle formulation was successfully developed using a desolvation technique and demonstrated more bioavailability, improved pharmacokinetic properties, and enhanced tissue targetability of the drug in rats.
Abstract: Introduction: For the real-time clinical utilization of curcumin (an ayurvedic natural product) to treat breast cancer, its dissolution, rate limited solubility, poor tissue absorption, and extensive in vivo metabolism that leads to its poor systemic bioavailability should be overcome. A polymer-based nanoparticle formulation using bovine serum albumin can increase its aqueous solubility and can achieve protected, sustained, and targeted therapy in breast cancer. Materials and Methods: Desolvation technique was optimized for the preparation of albumin nanoparticles. Particle size, drug release, encapsulation efficiency, drug polymer interaction were the in vitro properties that were determined. Cell culture studies, in vivo pharmacokinetics in rats were used for biological characterization of the formulation. Results: The formulations were successfully prepared using 1:1, 1:2, 1:3, 1:4 drug: polymer ratios and the percent entrapment was found to be 74.76%, 91.01%, 85.36%, 86.42%, respectively, and particle size determined by zetasizer was found to be 225.1, 223.5, 226.3, 228.7 nm, respectively, and in vitro release was sustained for at least one month with drug release of 75.74%, 65.97%, 64.42%, 54%, respectively. The dissolution rate and aqueous solubility of curcumin was enhanced with this formulation. Fourier transform infrared spectroscopy (FTIR) studies demonstrated that the drug was not changed in the formulation during the fabrication process. The proliferation assays in MDA-MB-231 tumor cell lines indicated more effectiveness of the formulation compared to its solution form. In rats, albumin nanoparticles sustained drug release, demonstrated more bioavailability, improved pharmacokinetic properties, and enhanced tissue targetability of the drug. Conclusions: An effective curcumin-albumin nanoparticle formulation was successfully developed using a desolvation technique.

Journal ArticleDOI
Xiujuan Xu1, Jing Huang1, Jijun Li2, Jiawei Yan2, Jingui Qin1, Zhen Li1 
TL;DR: Graphene oxide (GO) was found to effectively enhance the selectivity of aggregation-induced emission (AIE) biosensors, and a new method based on GO and AIE molecules was proposed to detect bovine serum albumin (BSA) with high sensitivity and selectivity.

PatentDOI
TL;DR: In this paper, a biomarker for diagnosing or prognosing childhood MR Nephropathy (MN) was proposed, which is cationic Bovine Serum Albumin (BSA) and an antibody that binds to a polypeptide of sequence SEQ ID NO: 3.
Abstract: The invention concerns a biomarker for diagnosing or prognosing childhood Membranous Nephropathy (MN), said biomarker is (i) cationic Bovine Serum Albumin (BSA), and/or (ii) an antibody that binds to a polypeptide of sequence SEQ ID NO: 3. The invention further concerns an antibody or antibody fragment or a composition comprising such an antibody or antibody fragment, wherein said antibody or antibody fragment is specific to an amino acid sequence SEQ ID NO: 3. The invention also concerns a foodstuff likely to contain BSA or cow milk or cow milk extracts, wherein said foodstuff is depleted in BSA.

Journal ArticleDOI
TL;DR: The results suggest that serum albumins might act as carrier proteins for folic acid in delivering it to target molecules.

Journal ArticleDOI
TL;DR: The practicability of the as-prepared MNPs was further assessed by specific capture of ovalbumin from an egg white sample and demonstrated that the APBA-coated MNPs had higher binding capacity and selectivity for glycoprotein compared to nonglycoproteins.
Abstract: Aminophenylboronic acid (APBA)-functionalized magnetic iron oxide nanoparticles (Fe3O4 MNPs) were synthesized for the selective capture of glycoproteins from unfractionated protein mixtures. The morphology, adsorption, and recognition properties of the resultant particles were investigated and uniform size APBA-coated MNPs with a mean diameter of ∼15 nm and high magnetic saturation value of 30.6 emu g−1 were obtained, which endued the adsorbent with a large surface area and convenience of isolation. The selectivity and binding capacity of APBA-coated MNPs were evaluated by using standard glycoproteins (cellulose and ovalbumin) and nonglycoproteins (bovine hemoglobin, bovine serum albumin and lysozyme) as model samples. Adsorption experiments and SDS-PAGE demonstrated that the APBA-coated MNPs had higher binding capacity and selectivity for glycoproteins compared to nonglycoproteins. In addition, the practicability of the as-prepared MNPs was further assessed by specific capture of ovalbumin from an egg white sample.

Journal ArticleDOI
TL;DR: Structural analysis showed that both Sudan II and Sudan IV interact mainly with BSA at the hydrophobic pocket and via Van der Waals forces, suggesting a partial protein unfolding.

Journal ArticleDOI
TL;DR: Fluorescence titrations support evidence that an observed dependence of PFAA‐BSA binding on pH is attributable to conformational changes in the protein, suggesting that physiological implications of strong binding to albumin may be important for short‐chain PFAAs.
Abstract: Interactions of perfluoroalkyl acids (PFAAs) with tissue and serum proteins likely contribute to their tissue distribution and bioaccumulation patterns. Protein-water distribution coefficients (K(PW) ) based on ligand associations with bovine serum albumin (BSA) as a model protein were recently proposed as biologically relevant parameters to describe the environmental behavior of PFAAs, yet empirical data on such protein binding behavior are limited. In the present study, associations of perfluoroalkyl carboxylates (PFCAs) with two to 12 carbons (C₂-C₁₂) and perfluoroalkyl sulfonates with four to eight carbons (C₄, C₆, and C₈) with BSA are evaluated at low PFAA:albumin mole ratios and various solution conditions using equilibrium dialysis, nanoelectrospray ionization mass spectrometry, and fluorescence spectroscopy. Log K(PW) values for C₄ to C₁₂ PFAAs range from 3.3 to 4.3. Affinity for BSA increases with PFAA hydrophobicity but decreases from the C₈ to C₁₂ PFCAs, likely due to steric hindrances associated with longer and more rigid perfluoroalkyl chains. The C₄-sulfonate exhibits increased affinity relative to the equivalent chain-length PFCA. Fluorescence titrations support evidence that an observed dependence of PFAA-BSA binding on pH is attributable to conformational changes in the protein. Association constants determined for perfluorobutanesulfonate and perfluoropentanoate with BSA are on the order of those for long-chain PFAAs (K(a) ∼10⁶/M), suggesting that physiological implications of strong binding to albumin may be important for short-chain PFAAs.

Journal ArticleDOI
TL;DR: The experimental results revealed the static quenching mechanism in the interaction of TRP with protein and the hydrogen bond and van der Waals forces played the major role in the binding of TRp to proteins.

Journal ArticleDOI
TL;DR: The relatively high SD obtained suggests that solvent dissolution models are not capable of modeling albumin binding accurately, and an equilibrium distribution model indicates that serum albumin generally has high contributions to the binding in the serum of polar compounds and relatively small low-polarity compounds, whereas albuminbinding for large low-Polarity compound is outcompeted by the strong partitioning into lipids due to low relative affinity of albumin.
Abstract: Binding to serum albumin has a strong influence on freely dissolved, unbound concentrations of chemicals in vivo and in vitro. For neutral organic solutes, previous studies have suggested a log–log correlation between the albumin–water partition coefficient and the octanol–water partition coefficient (Kow) and postulated highly nonspecific binding that is mechanistically analogous to dissolution into solvents. These relationships and concepts were further explored in this study. Bovine serum albumin (BSA)–water partition coefficients (KBSA/w) were measured for 83 structurally diverse neutral organic chemicals in consistent experimental conditions. The correlation between log KBSA/w and log Kow was moderate, with R2 = 0.76 and SD = 0.43. The log KBSA/w of low-polarity compounds including a series of chlorobenzenes and polycyclic aromatic hydrocarbons increased with log Kow linearly up to log Kow = 4–5, but then the linear relationship apparently broke off, and the increase became gradual. The fitting of po...

Journal ArticleDOI
TL;DR: Results indicate that all the nanoparticles presented a mean size and a polydispersity lower than 300nm and 0.33nm, respectively, were spherical shaped and negatively charged even after drug loading, and the presence of the different beta cyclodextrins in the polymeric network affected drug loading and could differently modulate nanoparticle mucoadhesiveness and drug permeation behaviour.

Journal ArticleDOI
22 Aug 2011-Small
TL;DR: Through high-resolution confocal Raman spectroscopy and imaging, it is established that SWCNT-BSAs are preferentially localized intracellularly, especially in the cytoplasm of both hMSCs and HeLa cells, demonstrating the efficacy of BSA as a biocompatible dispersant and a mediator of bioactivity.
Abstract: Single-wall carbon nanotubes (SWCNTs) possess many unique, inherent properties that make them attractive materials for application in medical and biological technologies. Development of concentrated SWCNT dispersions of isolated nanotubes that retain SWCNTs' inherent properties with minimal negative cellular effects is essential to fully realize the potential of SWCNTs in biotechnology. It is shown that bovine serum albumin (BSA), a common and well-characterized model blood serum protein, can individually disperse SWCNTs at concentrations of up to 0.3 mg mL(-1) while retaining SWCNTs' optical properties. Uptake into human mesenchymal stem cells (hMSC) and HeLa cells is quantified, revealing strikingly high concentrations of 86 ± 33 × 10(6) and 21 ± 13 × 10(6) SWCNTs per cell, respectively, without any apparent acute deleterious cellular effects. Through high-resolution confocal Raman spectroscopy and imaging, it is established that SWCNT-BSAs are preferentially localized intracellularly, especially in the cytoplasm of both hMSCs and HeLa cells. The uptake and localization results demonstrate the efficacy of BSA as a biocompatible dispersant and a mediator of bioactivity. BSA is widely available and inexpensive, which make these concentrated, highly-dispersed, noncovalently modified SWCNT-BSAs suitable for the development of SWCNT-based biotechnologies.