scispace - formally typeset
Search or ask a question

Showing papers on "Docosahexaenoic acid published in 2017"


Journal ArticleDOI
TL;DR: Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques and the anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance.
Abstract: Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte–endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance.

636 citations


Journal ArticleDOI
TL;DR: The present study suggests that the current recommendations of consumption and/or supplementation of omega-3 FAs are specific to particular groups of age and physiological status, and still need more fine tuning for overall human health and well being.
Abstract: In the last decades, the development of new technologies applied to lipidomics has revitalized the analysis of lipid profile alterations and the understanding of the underlying molecular mechanisms of lipid metabolism, together with their involvement in the occurrence of human disease. Of particular interest is the study of omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFAs), notably EPA (eicosapentaenoic acid, 20:5n-3), DHA (docosahexaenoic acid, 22:6n-3), and ARA (arachidonic acid, 20:4n-6), and their transformation into bioactive lipid mediators. In this sense, new families of PUFA-derived lipid mediators, including resolvins derived from EPA and DHA, and protectins and maresins derived from DHA, are being increasingly investigated because of their active role in the “return to homeostasis” process and resolution of inflammation. Recent findings reviewed in the present study highlight that the omega-6 fatty acid ARA appears increased, and omega-3 EPA and DHA decreased in most cancer tissues compared to normal ones, and that increments in omega-3 LC-PUFAs consumption and an omega-6/omega-3 ratio of 2–4:1, are associated with a reduced risk of breast, prostate, colon and renal cancers. Along with their lipid-lowering properties, omega-3 LC-PUFAs also exert cardioprotective functions, such as reducing platelet aggregation and inflammation, and controlling the presence of DHA in our body, especially in our liver and brain, which is crucial for optimal brain functionality. Considering that DHA is the principal omega-3 FA in cortical gray matter, the importance of DHA intake and its derived lipid mediators have been recently reported in patients with major depressive and bipolar disorders, Alzheimer disease, Parkinson’s disease, and amyotrophic lateral sclerosis. The present study reviews the relationships between major diseases occurring today in the Western world and LC-PUFAs. More specifically this review focuses on the dietary omega-3 LC-PUFAs and the omega-6/omega-3 balance, in a wide range of inflammation disorders, including autoimmune diseases. This review suggests that the current recommendations of consumption and/or supplementation of omega-3 FAs are specific to particular groups of age and physiological status, and still need more fine tuning for overall human health and well being.

333 citations


Journal ArticleDOI
TL;DR: The findings of this study suggest that unsaturated fatty acid metabolism is significantly dysregulated in the brains of patients with varying degrees of Alzheimer pathology.
Abstract: Background The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain. Methods and findings We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14), controls (N = 14) and “asymptomatic Alzheimer’s disease” (ASYMAD), i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15) from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA). We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG) and resistant (cerebellum) to classical AD pathology. The levels of six unsaturated fatty acids (UFAs) in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10−8, FC = 0.52, q = 1.03 x 10−6), linolenic acid (p = 2.5 x 10−4, FC = 0.84, q = 4.03 x 10−4), docosahexaenoic acid (p = 1.7 x 10−7, FC = 1.45, q = 1.24 x 10−6), eicosapentaenoic acid (p = 4.4 x 10−4, FC = 0.16, q = 6.48 x 10−4), oleic acid (p = 3.3 x 10−7, FC = 0.34, q = 1.46 x 10−6), and arachidonic acid (p = 2.98 x 10−5, FC = 0.75, q = 7.95 x 10−5). These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p ASYMAD>AD) and increases in docosahexanoic acid (AD>ASYMAD>control) may represent regionally specific threshold levels of these metabolites beyond which the accumulation of AD pathology triggers the expression of clinical symptoms. The main limitation of this study is the relatively small sample size. There are few cohorts with extensive longitudinal cognitive assessments during life and detailed neuropathological assessments at death, such as the BLSA Conclusions The findings of this study suggest that unsaturated fatty acid metabolism is significantly dysregulated in the brains of patients with varying degrees of Alzheimer pathology.

216 citations


Journal ArticleDOI
TL;DR: Recent studies elaborating mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke are described.
Abstract: Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.

179 citations


Journal ArticleDOI
TL;DR: Based on preclinical studies, these omega‐3 epoxyeicosanoids display cardioprotective, vasodilatory, anti‐inflammatory, and anti‐allergic properties that contribute to the beneficial effects of n‐3 LC‐PUFAs in diverse disease conditions ranging from cardiac disease, bronchial disorders, and intraocular neovascularization, to allergic intestinal inflammation and inflammatory pain.

153 citations


Journal ArticleDOI
TL;DR: D Dietary choline intake in the adult may also influence cognitive function via an effect on PC containing eicosapentaenoic and docosahexaenoic acids; polyunsaturated species of PC whose levels are reduced in brains from AD patients, and is associated with higher memory performance, and resistance to cognitive decline.
Abstract: Choline is an essential nutrient for humans. It is a precursor of membrane phospholipids (e.g., phosphatidylcholine (PC)), the neurotransmitter acetylcholine, and via betaine, the methyl group donor S-adenosylmethionine. High choline intake during gestation and early postnatal development in rat and mouse models improves cognitive function in adulthood, prevents age-related memory decline, and protects the brain from the neuropathological changes associated with Alzheimer’s disease (AD), and neurological damage associated with epilepsy, fetal alcohol syndrome, and inherited conditions such as Down and Rett syndromes. These effects of choline are correlated with modifications in histone and DNA methylation in brain, and with alterations in the expression of genes that encode proteins important for learning and memory processing, suggesting a possible epigenomic mechanism of action. Dietary choline intake in the adult may also influence cognitive function via an effect on PC containing eicosapentaenoic and docosahexaenoic acids; polyunsaturated species of PC whose levels are reduced in brains from AD patients, and is associated with higher memory performance, and resistance to cognitive decline.

148 citations


01 Jan 2017
TL;DR: For patients with retinitis pigmentosa beginning vitamin A therapy, addition of docosahexaenoic acid, 1200 mg/d, slowed the course of disease for 2 years, and a diet rich in omega-3 fatty acids slowed the decline in visual field sensitivity.

148 citations


Journal ArticleDOI
TL;DR: In this paper, the importance of positioning of palmitic acid at the glycerol backbone of triglycerides is discussed, and the phospholipids of the milk fat globule membrane are described and examples for their potential importance for infant development are presented.

142 citations


Journal ArticleDOI
TL;DR: The endogenous production of a previously unknown class of ω-3 PUFA–derived lipid metabolites that originate from the crosstalk between endocannabinoid and cytochrome P450 (CYP) epoxygenase metabolic pathways are reported on.
Abstract: Clinical studies suggest that diets rich in ω-3 polyunsaturated fatty acids (PUFAs) provide beneficial anti-inflammatory effects, in part through their conversion to bioactive metabolites. Here we report on the endogenous production of a previously unknown class of ω-3 PUFA–derived lipid metabolites that originate from the crosstalk between endocannabinoid and cytochrome P450 (CYP) epoxygenase metabolic pathways. The ω-3 endocannabinoid epoxides are derived from docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to form epoxyeicosatetraenoic acid-ethanolamide (EEQ-EA) and epoxydocosapentaenoic acid-ethanolamide (EDP-EA), respectively. Both EEQ-EAs and EDP-EAs are endogenously present in rat brain and peripheral organs as determined via targeted lipidomics methods. These metabolites were directly produced by direct epoxygenation of the ω-3 endocannabinoids, docosahexanoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) by activated BV-2 microglial cells, and by human CYP2J2. Neuroinflammation studies revealed that the terminal epoxides 17,18-EEQ-EA and 19,20-EDP-EA dose-dependently abated proinflammatory IL-6 cytokines while increasing anti-inflammatory IL-10 cytokines, in part through cannabinoid receptor-2 activation. Furthermore the ω-3 endocannabinoid epoxides 17,18-EEQ-EA and 19,20-EDP-EA exerted antiangiogenic effects in human microvascular endothelial cells (HMVEC) and vasodilatory actions on bovine coronary arteries and reciprocally regulated platelet aggregation in washed human platelets. Taken together, the ω-3 endocannabinoid epoxides’ physiological effects are mediated through both endocannabinoid and epoxyeicosanoid signaling pathways. In summary, the ω-3 endocannabinoid epoxides are found at concentrations comparable to those of other endocannabinoids and are expected to play critical roles during inflammation in vivo; thus their identification may aid in the development of therapeutics for neuroinflammatory and cerebrovascular diseases.

126 citations


Journal ArticleDOI
TL;DR: The importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent is discussed and a critical view about the ways to supply this noble fatty acid to the population is included.
Abstract: Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active participation in the development of the nervous system in early life. DHA and specifically one of its derivatives known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is also included a critical view about the ways to supply this noble fatty acid to the population.

122 citations


Journal ArticleDOI
TL;DR: It is shown that dietary LPC-DHA efficiently increases brain DHA content and improves brain function in adult mammals, thus providing a novel nutraceutical approach for the prevention and treatment of neurological diseases associated with DHA deficiency, such as Alzheimer’s disease.
Abstract: Docosahexaenoic acid (DHA) is uniquely concentrated in the brain, and is essential for its function, but must be mostly acquired from diet. Most of the current supplements of DHA, including fish oil and krill oil, do not significantly increase brain DHA, because they are hydrolyzed to free DHA and are absorbed as triacylglycerol, whereas the transporter at blood brain barrier is specific for phospholipid form of DHA. Here we show that oral administration of DHA to normal adult mice as lysophosphatidylcholine (LPC) (40 mg DHA/kg) for 30 days increased DHA content of the brain by >2-fold. In contrast, the same amount of free DHA did not increase brain DHA, but increased the DHA in adipose tissue and heart. Moreover, LPC-DHA treatment markedly improved the spatial learning and memory, as measured by Morris water maze test, whereas free DHA had no effect. The brain derived neurotrophic factor increased in all brain regions with LPC-DHA, but not with free DHA. These studies show that dietary LPC-DHA efficiently increases brain DHA content and improves brain function in adult mammals, thus providing a novel nutraceutical approach for the prevention and treatment of neurological diseases associated with DHA deficiency, such as Alzheimer’s disease.

Journal ArticleDOI
TL;DR: Enteral DHA supplementation at a dose of 60 mg per kilogram per day did not result in a lower risk of physiological bronchopulmonary dysplasia than a control emulsion among preterm infants born before 29 weeks of gestation and may have resulted in a greater risk.
Abstract: BackgroundStudies in animals and in humans have suggested that docosahexaenoic acid (DHA), an n−3 long-chain polyunsaturated fatty acid, might reduce the risk of bronchopulmonary dysplasia, but appropriately designed trials are lacking. MethodsWe randomly assigned 1273 infants born before 29 weeks of gestation (stratified according to sex, gestational age [<27 weeks or 27 to <29 weeks], and center) within 3 days after their first enteral feeding to receive either an enteral emulsion providing DHA at a dose of 60 mg per kilogram of body weight per day or a control (soy) emulsion without DHA until 36 weeks of postmenstrual age. The primary outcome was bronchopulmonary dysplasia, defined on a physiological basis (with the use of oxygen-saturation monitoring in selected infants), at 36 weeks of postmenstrual age or discharge home, whichever occurred first. ResultsA total of 1205 infants survived to the primary outcome assessment. Of the 592 infants assigned to the DHA group, 291 (49.1% by multiple imputation)...

Journal ArticleDOI
TL;DR: A robust link between DHA and cognitive health is demonstrated and a host of mechanisms have been proposed, including DHA, which inherently has a characteristic three-dimensional structure, increases membrane fluidity, strengthens antioxidant activity and enhances the expression of several proteins that act as substrates for improving memory functions.
Abstract: Docosahexaenoic acid (DHA, C22:6, ω-3) is a highly polyunsaturated omega-3 fatty acid. It is concentrated in neuronal brain membranes, for which reason it is also referred to as a "brain food". DHA is essential for brain development and function. It plays an important role in improving antioxidant and cognitive activities of the brain. DHA deficiency occurs during aging and dementia, impairs memory and learning, and promotes age-related neurodegenerative diseases, including Alzheimer's disease (AD). For about two decades, we have reported that oral administration of DHA increases spatial memory acquisition, stimulates neurogenesis, and protects against and reverses memory impairment in amyloid β peptide-infused AD rat models by decreasing amyloidogenesis and protects against age-related cognitive decline in the elderly. These results demonstrate a robust link between DHA and cognitive health. Rodents that were fed a diet low in ω-3 polyunsaturated fatty acids, particularly those that were DHA-deficient, frequently suffered from anxiety, depression and memory impairment. Although the exact mechanisms of action of DHA in brain functions are still elusive, a host of mechanisms have been proposed. For example, DHA, which inherently has a characteristic three-dimensional structure, increases membrane fluidity, strengthens antioxidant activity and enhances the expression of several proteins that act as substrates for improving memory functions. It reduces the brain amyloid burden and inhibits in vitro fibrillation and amyloid-induced neurotoxicity in cell-culture model. In this review, we discuss how DHA acts as a molecule with diverse functions.

Journal ArticleDOI
09 Nov 2017-PLOS ONE
TL;DR: The results suggested that EPA and DHA attenuate oxidative stress-induced DNA damage in vascular endothelial cells through upregulation of NRF2-mediated antioxidant response, and omega-3 fatty acids likely help prevent cardiovascular disease, at least in part, by their genome protective properties.
Abstract: Objective Omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), likely prevent cardiovascular disease, however their mechanisms remain unclear. Recently, the role of DNA damage in atherogenesis has been receiving considerable attention. Here, we investigated the effects of EPA and DHA on DNA damage in vascular endothelial cells to clarify their antiatherogenic mechanisms. Methods and results We determined the effect of EPA and DHA on H2O2-induced DNA damage response in human aortic endothelial cells. Immunofluorescence staining showed that γ-H2AX foci formation, a prominent marker of DNA damage, was significantly reduced in the cells treated with EPA and DHA (by 47% and 48%, respectively). H2O2-induced activation of ATM, a major kinase orchestrating DNA damage response, was significantly reduced with EPA and DHA treatment (by 31% and 33%, respectively). These results indicated EPA and DHA attenuated DNA damage independently of the DNA damage response. Thus the effects of EPA and DHA on a source of DNA damage were examined. EPA and DHA significantly reduced intracellular reactive oxygen species under both basal condition and H2O2 stimulation. In addition, the mRNA levels of antioxidant molecules, such as heme oxygenase-1, thioredoxin reductase 1, ferritin light chain, ferritin heavy chain and manganese superoxide dismutase, were significantly increased with EPA and DHA. Silencing nuclear factor erythroid 2-related factor 2 (NRF2) remarkably abrogated the increases in mRNA levels of antioxidant molecules and the decrease in intracellular reactive oxygen species. Furthermore, EPA and DHA significantly reduced H2O2-induced senescence-associated β-galactosidase activity in the cells (by 31% and 22%, respectively), which was revoked by NRF2 silencing. Conclusions Our results suggested that EPA and DHA attenuate oxidative stress-induced DNA damage in vascular endothelial cells through upregulation of NRF2-mediated antioxidant response. Therefore omega-3 fatty acids likely help prevent cardiovascular disease, at least in part, by their genome protective properties.

Journal ArticleDOI
TL;DR: Comparing the effects of the parenteral emulsion SMOFlipid with 15% fish oil with Clinoleic on retinopathy of prematurity and other morbidities and growth and their impact on longitudinal serum levels of fatty acids found it necessary to conclude that more prolonged or different levels of DHA and AA supplementation are warranted.
Abstract: Summary Background & aims The purpose of the study was to compare the effects of the parenteral emulsion SMOFlipid ® , with 15% fish oil, with Clinoleic ® on retinopathy of prematurity (ROP) and other morbidities and growth, and to compare their impact on longitudinal serum levels of fatty acids. Retinopathy of prematurity, other morbidity and growth were correlated with each parenteral lipid supplement. Methods Ninety infants born at gestational age ® or Clinoleic ® . Two thirds (66%) of the infants received parenteral nutrition for up to 14 days birth (median 8, range 2–14 days), and additional 25% of the infants received for up to 28 days after birth (median 21, range 15–28 days). Cord blood samples and then venous blood samples were obtained at ages 1, 7, 14, and 28 days and at postmenstrual age (PMA) 32, 36, and 40 weeks. Breastmilk was collected at postnatal day 7, and at PMA 32 and 40 weeks. Serum phospholipid and breastmilk total fatty acids were analyzed by gas chromatography–mass spectrometry. Treatment groups were compared with regard to ROP, bronchopulmonary dysplasia, necrotizing enterocolitis, patent ductus arteriosus sepsis and growth between birth and 36 weeks. Results Infants on SMOFlipid ® had higher fractions of omega-3 LCPUFA eicosapentaenoic acid (EPA) and slightly higher omega-3 LCPUFA docosahexaenoic acid (DHA) fraction and a decreased arachidonic acid (AA) to DHA ratio from one week after birth up to 32 postmenstrual weeks compared to infants on Clinoleic ® . Treatment groups did not differ in morbidities or growth. Conclusion Supplementation with SMOFlipid ® containing 15% fish oil during parenteral nutrition increased EPA substantially, DHA marginally, reduced AA and decreased AA to DHA ratio. It did not reduce morbidity or affect growth. Since extremely preterm infants accumulate a large deficit of DHA and AA, studies on more prolonged or different levels of DHA and AA supplementation are warranted.

Journal ArticleDOI
TL;DR: It is demonstrated that B cell responses are impaired across human and mouse obesity models and show that essential fatty acid status is a factor influencing humoral immunity, potentially through an SPM-mediated mechanism.
Abstract: Obesity is associated with increased risk for infections and poor responses to vaccinations, which may be due to compromised B cell function. However, there is limited information about the influence of obesity on B cell function and underlying factors that modulate B cell responses. Therefore, we studied B cell cytokine secretion and/or Ab production across obesity models. In obese humans, B cell IL-6 secretion was lowered and IgM levels were elevated upon ex vivo anti-BCR/TLR9 stimulation. In murine obesity induced by a high fat diet, ex vivo IgM and IgG were elevated with unstimulated B cells. Furthermore, the high fat diet lowered bone marrow B cell frequency accompanied by diminished transcripts of early lymphoid commitment markers. Murine B cell responses were subsequently investigated upon influenza A/Puerto Rico/8/34 infection using a Western diet model in the absence or presence of docosahexaenoic acid (DHA). DHA, an essential fatty acid with immunomodulatory properties, was tested because its plasma levels are lowered in obesity. Relative to controls, mice consuming the Western diet had diminished Ab titers whereas the Western diet plus DHA improved titers. Mechanistically, DHA did not directly target B cells to elevate Ab levels. Instead, DHA increased the concentration of the downstream specialized proresolving lipid mediators (SPMs) 14-hydroxydocosahexaenoic acid, 17-hydroxydocosahexaenoic acid, and protectin DX. All three SPMs were found to be effective in elevating murine Ab levels upon influenza infection. Collectively, the results demonstrate that B cell responses are impaired across human and mouse obesity models and show that essential fatty acid status is a factor influencing humoral immunity, potentially through an SPM-mediated mechanism.

Journal ArticleDOI
TL;DR: DHA + EVOO supplementation significantly reduces hepatic steatosis, oxidative stress, systemic inflammation, and insulin resistance and is associated with the activation/inactivation of key transcription factors involved in the above-mentioned processes.
Abstract: cope : Non alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease, for which there is no validated drug therapy at present time In this respect, the polyunsaturated fatty acid docosahexaenoic acid (C22:6 n-3, DHA) modulate lipid metabolism in the liver, and extra virgin olive oil (EVOO) has hepatoprotective effects Methods and results : Effect of combined docosahexaenoic acid (DHA; C22:6 n-3) and extra virgin olive oil (EVOO) administration to mice on oxidative stress and metabolic disturbances induced by high-fat diet (HFD) was evaluated Male C57BL/6J mice were fed with a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or an HFD (60% fat, 20% protein, 20% carbohydrates) for 12 wk Animals were supplemented with DHA (50 mg/kg/day), EVOO (50 mg/kg/day), or DHA+EVOO through oral route DHA+EVOO co-supplementation resulted in greater protection (p<005) over that elicited by DHA or EVOO supply alone, when compared to the damage induced by HFD DHA+EVOO significantly reduced hepatic steatosis, oxidative stress, systemic inflammation, and insulin resistance Conclusion : Synergistic beneficial effects of DHA+EVOO supplementation were associated with the activation/inactivation of key transcription factors involved in the above-mentioned processes Data presented indicate that dietary supplementation with DHA+EVOO drastically reduces the development of NAFLD This article is protected by copyright All rights reserved

Journal ArticleDOI
TL;DR: Obtaining a better understanding of the complex role CYP‐derived eicosanoids have within the heart will provide valuable insight for both basic and clinical researchers investigation CVD.

Journal ArticleDOI
TL;DR: Marine n-3 PUFAs are likely to be an important tool for NAFLD treatment, although further studies are required to confirm this.

Journal ArticleDOI
TL;DR: Some of the cellular mechanisms for incorporating DHA into membrane GPLs are summarized and biological effects and functions of DHA‐containing membranes of several cell and tissue types are proposed.

Journal ArticleDOI
TL;DR: EPA, DHA, sertraline and venlafaxine prevented the IL-1β-induced reduction in neurogenesis in human hippocampal progenitor cells and reversed the increase in kynurenine levels.
Abstract: Both increased inflammation and reduced neurogenesis have been associated with the pathophysiology of major depression We have previously described how interleukin-1 (IL-1) β, a pro-inflammatory cytokine increased in depressed patients, decreases neurogenesis in human hippocampal progenitor cells Here, using the same human in vitro model, we show how omega-3 (ω-3) polyunsaturated fatty acids and conventional antidepressants reverse this reduction in neurogenesis, while differentially affecting the kynurenine pathway We allowed neural cells to proliferate for 3 days and further differentiate for 7 days in the presence of IL-1β (10 ng/ml) and either the selective serotonin reuptake inhibitor sertraline (1 µM), the serotonin and norepinephrine reuptake inhibitor venlafaxine (1 µM), or the ω-3 fatty acids eicosapentaenoic acid (EPA, 10 µM) or docosahexaenoic acid (DHA, 10 µM) Co-incubation with each of these compounds reversed the IL-1β-induced reduction in neurogenesis (DCX- and MAP2-positive neurons), indicative of a protective effect Moreover, EPA and DHA also reversed the IL-1β-induced increase in kynurenine, as well as mRNA levels of indolamine-2,3-dioxygenase (IDO); while DHA and sertraline reverted the IL-1β-induced increase in quinolinic acid and mRNA levels of kynurenine 3-monooxygenase (KMO) Our results show common effects of monoaminergic antidepressants and ω-3 fatty acids on the reduction of neurogenesis caused by IL-1β, but acting through both common and different kynurenine pathway-related mechanisms Further characterization of their individual properties will be of benefit towards improving a future personalized medicine approach

Journal ArticleDOI
TL;DR: In offspring of women with GDM treated either with diet or insulin, higher fetal fat accretion and lower placental MFSD2a contribute to reduce DHA availability.

Journal ArticleDOI
TL;DR: The effects of omega-3 fatty acids supplementation in mild AD corroborate epidemiological observational studies showing that omega- 3 fatty acids may be beneficial in disease onset, when there is slight impairment of brain function.
Abstract: Introduction: Alzheimer's disease (AD) is a neurodegeneration disorder characterized by progressive impairments of memory, language, reasoning, and other cognitive functions. Evidence suggests that...

Journal ArticleDOI
TL;DR: In vivo results highlight the potency of administered DHA—acetylated to phospholipids—to rapidly regulate LPS-induced neuroinflammatory processes through their effect on microglia, in particular, both IL-6 production and signaling are targeted by AceDoPC inmicroglia.
Abstract: Neuroinflammatory processes are considered a double-edged sword, having both protective and detrimental effects in the brain. Microglia, the brain’s resident innate immune cells, are a key component of neuroinflammatory response. There is a growing interest in developing drugs to target microglia and control neuroinflammatory processes. In this regard, docosahexaenoic acid (DHA), the brain’s n-3 polyunsaturated fatty acid, is a promising molecule to regulate pro-inflammatory microglia and cytokine production. Several works reported that the bioavailability of DHA to the brain is higher when DHA is acylated to phospholipid. In this work, we analyzed the anti-inflammatory activity of DHA-phospholipid, either acetylated at the sn-1 position (AceDoPC, a stable form thought to have superior access to the brain) or acylated with palmitic acid at the sn-1 position (PC-DHA) using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. In vivo, adult C57Bl6/J mice were injected intravenously (i.v.) with either AceDoPC or PC-DHA 24 h prior to LPS (i.p.). For in vitro studies, immortalized murine microglia cells BV-2 were co-incubated with DHA forms and LPS. AceDoPC and PC-DHA effect on brain or BV-2 PUFA content was assessed by gas chromatography. LPS-induced pro-inflammatory cytokines interleukin IL-1β, IL-6, and tumor necrosis factor (TNF) α production were measured by quantitative PCR (qPCR) or multiplex. IL-6 receptors and associated signaling pathway STAT3 were assessed by FACS analysis and western-blot in vitro. In vivo, a single injection of AceDoPC or PC-DHA decreased LPS-induced IL-6 production in the hippocampus of mice. This effect could be linked to their direct effect on microglia, as revealed in vitro. In addition, AceDoPC or PC-DHA reduced IL-6 receptor while only AceDoPC decreased IL-6-induced STAT3 phosphorylation. These results highlight the potency of administered DHA—acetylated to phospholipids—to rapidly regulate LPS-induced neuroinflammatory processes through their effect on microglia. In particular, both IL-6 production and signaling are targeted by AceDoPC in microglia.

Journal ArticleDOI
TL;DR: The growth rates, biomass yields, PUFA and sterol content, and daily gain of eight strains of marine cryptophytes are determined, and it is concluded that marine cryptphytes are a good alternative for the ecologically sustainable and profitable production of health-promoting lipids.
Abstract: Microalgae have the ability to synthetize many compounds, some of which have been recognized as a source of functional ingredients for nutraceuticals with positive health effects. One well-known example is the long-chain polyunsaturated fatty acids (PUFAs), which are essential for human nutrition. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the two most important long-chain omega-3 (ω-3) PUFAs involved in human physiology, and both industries are almost exclusively based on microalgae. In addition, algae produce phytosterols that reduce serum cholesterol. Here we determined the growth rates, biomass yields, PUFA and sterol content, and daily gain of eight strains of marine cryptophytes. The maximal growth rates of the cryptophytes varied between 0.34–0.70 divisions day−1, which is relatively good in relation to previously screened algal taxa. The studied cryptophytes were extremely rich in ω-3 PUFAs, especially in EPA and DHA (range 5.8–12.5 and 0.8–6.1 µg mg dry weight−1, respectively), but their sterol concentrations were low. Among the studied strains, Storeatula major was superior in PUFA production, and it also produces all PUFAs, i.e., α-linolenic acid (ALA), stearidonic acid (SDA), EPA, and DHA, which is rare in phytoplankton in general. We conclude that marine cryptophytes are a good alternative for the ecologically sustainable and profitable production of health-promoting lipids.

Journal ArticleDOI
TL;DR: Overall, no clear differences between the effects of EPA and DHA on TG levels, or on turnover of TG-rich lipoproteins, have been observed.
Abstract: Epidemiological and genetic studies suggest that elevated triglyceride (TG)-rich lipoprotein levels in the circulation increase the risk of cardiovascular disease. Prescription formulations of omega-3 fatty acids (OM3FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduce plasma TG levels and are approved for the treatment of patients with severe hypertriglyceridemia. Many preclinical studies have investigated the TG-lowering mechanisms of action of OM3FAs, but less is known from clinical studies. We conducted a review, using systematic methodology, of studies in humans assessing the mechanisms of action of EPA and DHA on apolipoprotein B-containing lipoproteins, including TG-rich lipoproteins and low-density lipoproteins (LDLs). A systematic search of PubMed retrieved 55 articles, of which 30 were used in the review; 35 additional arrticles were also included. In humans, dietary DHA is retroconverted to EPA, while production of DHA from EPA is not observed. Dietary DHA is preferentially esterified into TGs, while EPA is more evenly esterified into TGs, cholesterol esters and phospholipids. The preferential esterification of DHA into TGs likely explains the higher turnover of DHA than EPA in plasma. The main effects of both EPA and DHA are decreased fasting and postprandial serum TG levels, through reduction of hepatic very-low-density lipoprotein (VLDL)-TG production. The exact mechanism for reduced VLDL production is not clear but does not include retention of lipids in the liver; rather, increased hepatic fatty acid oxidation is likely. The postprandial reduction in TG levels is caused by increased lipoprotein lipase activity and reduced serum VLDL-TG concentrations, resulting in enhanced chylomicron clearance. Overall, no clear differences between the effects of EPA and DHA on TG levels, or on turnover of TG-rich lipoproteins, have been observed. Effects on LDL are complex and may be influenced by genetics, such as APOE genotype. EPA and DHA diminish fasting circulating TG levels via reduced production of VLDL. The mechanism of reduced VLDL production does not involve hepatic retention of lipids. Lowered postprandial TG levels are also explained by increased chylomicron clearance. Little is known about the specific cellular and biochemical mechanisms underlying the TG-lowering effects of EPA and DHA in humans.

Journal ArticleDOI
TL;DR: These ω-3 PUFAs may suppress neuroinflammation through SIRT1-mediated inhibition of the microglial NF-κB stress response and ensue pro-inflammatory cytokine release, which is implicated in NAMPT-related and -unrelated pathways.

Journal ArticleDOI
TL;DR: Current knowledge on the metabolic pathways involved in generation of DHA metabolites is summarized, and it is likely that novel bioactive derivatives will be identified in the future.

Journal ArticleDOI
TL;DR: A critical examination of the literature investigating the ability of DHA to stall progression during different cell cycle phases in cancer cells, as well as the consequences that these changes may have on tumour growth, independently and in conjunction with chemotherapy are provided.
Abstract: Globally, there were 14.1 million new cancer diagnoses and 8.2 million cancer deaths in 2012. For many cancers, conventional therapies are limited in their successes and an improved understanding of disease progression is needed in conjunction with exploration of alternative therapies. The long chain polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to enhance many cellular responses that reduce cancer cell viability and decrease proliferation both in vitro and in vivo. A small number of studies suggest that DHA improves chemotherapy outcomes in cancer patients. It is readily incorporated into cancer cell membranes and, as a result there has been considerable research regarding cell membrane initiated events. For example, DHA has been shown to mediate the induction of apoptosis/reduction of proliferation in vitro and in vivo. However, there is limited research into the effect of DHA on cell cycle regulation in cancer cells and the mechanism(s) by which DHA acts are not fully understood. The purpose of the current review is to provide a critical examination of the literature investigating the ability of DHA to stall progression during different cell cycle phases in cancer cells, as well as the consequences that these changes may have on tumour growth, independently and in conjunction with chemotherapy.

Journal ArticleDOI
TL;DR: Insight is provided into the mechanistic role that gut microbes may play in the regulation of anxiety and depressive-like behaviors and how dietary intervention can modulate these effects.
Abstract: Dietary supplementation with the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been shown to have a beneficial effect on reducing the symptoms associated with several neuropsychiatric conditions including anxiety and depression. However, the mechanisms underlying this effect remain largely unknown. Increasing evidence suggests that the vast repertoire of commensal bacteria within the gut plays a critical role in regulating various biological processes in the brain and may contribute to neuropsychiatric disease risk. The present study determined the contribution of DHA on anxiety and depressive-like behaviors through modulation of the gut microbiota in a paradigm of social isolation. Adult male and female mice were subjected to social isolation for 28days and then placed either on a control diet or a diet supplemented with 0.1% or 1.0% DHA. Fecal pellets were collected both 24h and 7days following the introduction of the new diets. Behavioral testing revealed that male mice fed a DHA diet, regardless of dose, exhibited reduced anxiety and depressive-like behaviors compared to control fed mice while no differences were observed in female mice. As the microbiota-brain-axis has been recently implicated in behavior, composition of microbial communities were analyzed to examine if these sex-specific effects of DHA may be associated with changes in the gut microbiota (GM). Clear sex differences were observed with males and females showing distinct microbial compositions prior to DHA supplementation. The introduction of DHA into the diet also induced sex-specific interactions on the GM with the fatty acid producing a significant effect on the microbial profiles in males but not in females. Interestingly, levels of Allobaculum and Ruminococcus were found to significantly correlate with the behavioral changes observed in the male mice. Predictive metagenome analysis using PICRUSt was performed on the fecal samples collected from males and identified enrichment in functional KEGG pathway terms relevant to processes such as the biosynthesis of unsaturated fatty acids and antioxidant metabolism. These results indicate that DHA alters commensal community composition and produces beneficial effects on anxiety and depressive-like behaviors in a sex-specific manner. The present study provides insight into the mechanistic role that gut microbes may play in the regulation of anxiety and depressive-like behaviors and how dietary intervention can modulate these effects.