scispace - formally typeset
Search or ask a question

Showing papers on "Electroweak interaction published in 2014"


Journal ArticleDOI
Keith A. Olive1, Kaustubh Agashe2, Claude Amsler3, Mario Antonelli  +222 moreInstitutions (107)
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations


Journal ArticleDOI
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

5,459 citations


Journal ArticleDOI
TL;DR: In this article, the authors compare the electroweak fit on the Higgs couplings with direct LHC measurements, and examine present and future prospects of these constraints using a model with modified couplings of Higgs boson to fermions and bosons.
Abstract: For a long time, global fits of the electroweak sector of the standard model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC) and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using the latest NNLO theoretical predictions and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and we examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons.

667 citations


Journal ArticleDOI
TL;DR: In this paper, the renormalization of the dimension-six operators of the SM EFT has been studied for the first time, and the results give the entire 2499 × 2499 anomalous dimension matrix.
Abstract: We calculate the gauge terms of the one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory (SM EFT). Combin- ing these results with our previous results for the λ and Yukawa coupling terms completes the calculation of the one-loop anomalous dimension matrix for the dimension-six operators. There are 1350 CP-even and 1149 CP-odd parameters in the dimension-six Lagrangian for 3 generations, and our results give the entire 2499 × 2499 anomalous dimension matrix. We discuss how the renormalization of the dimension-six operators, and the additional renormal- ization of the dimension d ≤ 4 terms of the SM Lagrangian due to dimension-six operators, lays the groundwork for future precision studies of the SM EFT aimed at constraining the ef- fects of new physics through precision measurements at the electroweak scale. As some sample applications, we discuss some aspects of the full RGE improved result for essential processes such as gg → h, h → γγ and h → Zγ, for Higgs couplings to fermions, for the precision electroweak parameters S and T, and for the operators that modify important processes in precision electroweak phenomenology, such as the three-body Higgs boson decay h → Z l + l and triple gauge boson couplings. We discuss how the renormalization group improved results can be used to study the flavor problem in the SM EFT, and to test the minimal flavor viola- tion (MFV) hypothesis. We briefly discuss the renormalization effects on the dipole coefficient Ceγ which contributes to µ → eγ and to the muon and electron magnetic and electric dipole moments.

589 citations


Journal ArticleDOI
TL;DR: In this article, the authors compare the electroweak fit on the Higgs couplings with direct LHC measurements, and examine present and future prospects of these constraints using a model with modified couplings of the higgs boson to fermions and bosons.
Abstract: For a long time, global fits of the electroweak sector of the Standard Model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC), and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using newest NNLO theoretical predictions, and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons.

447 citations


Journal ArticleDOI
M. Bicer1, H. Duran Yildiz1, I. Yildiz2, G. Coignet3, Marco Delmastro3, Theodoros Alexopoulos4, Christophe Grojean, Stefan Antusch5, Tanaji Sen6, Hong-Jian He7, K. Potamianos8, Sigve Haug9, Asunción Moreno, Arno Heister10, Veronica Sanz11, Guillelmo Gomez-Ceballos12, Markus Klute12, Marco Zanetti12, Lian-Tao Wang13, Mogens Dam14, Celine Boehm15, Nigel Glover15, Frank Krauss15, Alexander Lenz15, Michael Syphers16, Christos Leonidopoulos17, Vitaliano Ciulli, P. Lenzi, Giacomo Sguazzoni, Massimo Antonelli, Manuela Boscolo, Umberto Dosselli, O. Frasciello, C. Milardi, G. Venanzoni, Mikhail Zobov, J.J. van der Bij18, M. De Gruttola19, D. W. Kim20, Michail Bachtis21, A. Butterworth21, C. Bernet21, Cristina Botta21, Federico Carminati21, A. David21, L. Deniau21, David D'Enterria21, Gerardo Ganis21, Brennan Goddard21, Gian F. Giudice21, Patrick Janot21, John Jowett21, Carlos Lourenco21, L. Malgeri21, Emilio Meschi21, Filip Moortgat21, Pasquale Musella21, J. A. Osborne21, Luca Perrozzi21, Maurizio Pierini21, Louis Rinolfi21, A. De Roeck21, Juan Rojo21, G. Roy21, Andrea Sciabà21, A. Valassi21, C. S. Waaijer21, Jorg Wenninger21, H. K. Woehri21, Frank Zimmermann21, A. Blondel22, Michael Koratzinos22, Philippe Mermod22, Yasar Onel23, R. Talman24, E. Castaneda Miranda25, Eugene Bulyak, D. Porsuk, Dmytro Kovalskyi26, Sanjay Padhi26, Pietro Faccioli, John Ellis27, Mario Campanelli28, Yang Bai29, M. Chamizo, Robert Appleby30, Hywel Owen30, H. Maury Cuna31, C. Gracios32, German Ardul Munoz-Hernandez32, Luca Trentadue33, E. Torrente-Lujan34, S. Wang35, David Bertsche36, A. V. Gramolin37, Valery I. Telnov37, Marumi Kado38, P. Petroff38, Patrizia Azzi, Oreste Nicrosini, Fulvio Piccinini, Guido Montagna39, F. Kapusta38, S. Laplace38, W. Da Silva38, Nectaria A. B. Gizani40, Nathaniel Craig41, Tao Han42, Claudio Luci43, Barbara Mele43, Luca Silvestrini43, Marco Ciuchini, R. Cakir44, R. Aleksan, Fabrice Couderc, Serguei Ganjour, Eric Lancon, Elizabeth Locci, P. Schwemling, M. Spiro, C. Tanguy, Jean Zinn-Justin, Stefano Moretti45, M. Kikuchi46, Haruyo Koiso46, Kazuhito Ohmi46, Katsunobu Oide46, G. Pauletta47, Roberto Ruiz de Austri48, Maxime Gouzevitch38, Subhasis Chattopadhyay49 
TL;DR: In this article, the authors present a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study, and present a combination of TLEp and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market.
Abstract: The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e- collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the t-tbar threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.

445 citations


Journal ArticleDOI
TL;DR: In this article, the authors search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at root s=8TeV with the ATLAS detector.
Abstract: Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at root s=8TeV with the ATLAS detector

430 citations


Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2121 moreInstitutions (139)
TL;DR: In this paper, searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and W, Z, and Higgs bosons are presented.
Abstract: Searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and W, Z, and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy sqrt(s) = 8 TeV with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 inverse femtobarns. The observed event rates are in agreement with expectations from the standard model. These results probe charginos and neutralinos with masses up to 720 GeV, and sleptons up to 260 GeV, depending on the model details.

346 citations


Journal ArticleDOI
TL;DR: An overview of composite Higgs models in light of the discovery of the Higgs boson can be found in this article, where the main ideas for generating flavor structure and the main mechanisms for protecting against large flavor violating effects are discussed.
Abstract: We present an overview of composite Higgs models in light of the discovery of the Higgs boson The small value of the physical Higgs mass suggests that the Higgs quartic is likely loop generated, thus models with tree-level quartics will generically be more tuned We classify the various models (including bona fide composite Higgs, little Higgs, holographic composite Higgs, twin Higgs and dilatonic Higgs) based on their predictions for the Higgs potential, review the basic ingredients of each of them, and quantify the amount of tuning needed, which is not negligible in any model We explain the main ideas for generating flavor structure and the main mechanisms for protecting against large flavor violating effects, and present a summary of the various coset models that can result in realistic pseudo-Goldstone Higgses We review the current experimental status of such models by discussing the electroweak precision, flavor and direct search bounds, and comment on UV completions and on ways to incorporate dark matter

305 citations


Journal ArticleDOI
TL;DR: In this article, the leading-order Lagrangian of the Standard Model with a light scalar boson was constructed at the weak scale v = 246 GeV and the symmetry breaking scale Λ was taken to be at 4 π v or above.

267 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate the possibility of postulating a no-lose theorem for testing electroweak baryogenesis in future e − − + − − or hadron colliders.
Abstract: Electroweak Baryogenesis (EWBG) is a compelling scenario for explaining the matter-antimatter asymmetry in the universe. Its connection to the electroweak phase transition makes it inherently testable. However, completely excluding this scenario can seem difficult in practice, due to the sheer number of proposed models. We investigate the possibility of postulating a “no-lose” theorem for testing EWBG in future e + e − or hadron colliders. As a first step we focus on a factorized picture of EWBG which separates the sources of a stronger phase transition from those that provide new sources of CP violation. We then construct a “nightmare scenario” that generates a strong first-order phase transition as required by EWBG, but is very difficult to test experimentally. We show that a 100 TeV hadron collider is both necessary and possibly sufficient for testing the parameter space of the nightmare scenario that is consistent with EWBG.

Journal ArticleDOI
TL;DR: In this paper, the authors present precise theoretical predictions for on-shell W+ W- production that include QCD effects up to next to next-to-leading order in perturbation theory.
Abstract: Charged gauge boson pair production at the Large Hadron Collider allows detailed probes of the fundamental structure of electroweak interactions. We present precise theoretical predictions for on-shell W+ W- production that include, for the first time, QCD effects up to next to next to leading order in perturbation theory. As compared to next to leading order, the inclusive W+ W- cross section is enhanced by 9% at 7 TeV and 12% at 14 TeV. The residual perturbative uncertainty is at the 3% level. The severe contamination of the W+ W- cross section due to top-quark resonances is discussed in detail. Comparing different definitions of top-free W+ W- production in the four and five flavor number schemes, we demonstrate that top-quark resonances can be separated from the inclusive W+ W- cross section without a significant loss of theoretical precision.

Journal ArticleDOI
TL;DR: In this article, the authors considered the theoretical and experimental constraints on two-Higgs-doublet models, focusing on the parameter space relevant to explain the present muon g-2 anomaly, Delta alpha(mu), in four different types of models, type I, II, lepton specific and flipped.
Abstract: We update the constraints on two-Higgs-doublet models (2HDMs) focusing on the parameter space relevant to explain the present muon g - 2 anomaly, Delta alpha(mu), in four different types of models, type I, II, ``lepton specific'' (or X) and ``flipped'' (or Y). We show that the strong constraints provided by the electroweak precision data on the mass of the pseudoscalar Higgs, whose contribution may account for Delta alpha(mu), are evaded in regions where the charged scalar is degenerate with the heavy neutral one and the mixing angles alpha and beta satisfy the Standard Model limit beta - alpha approximate to pi/2. We combine theoretical constraints from vacuum stability and perturbativity with direct and indirect bounds arising from collider and B physics. Possible future constraints from the electron g - 2 are also considered. If the 126 GeV resonance discovered at the LHC is interpreted as the light CP-even Higgs boson of the 2HDM, we find that only models of type X can satisfy all the considered theoretical and experimental constraints.

Journal ArticleDOI
TL;DR: In this article, a global electroweak fit of the dark photon model was performed at the 14 TeV LHC and a 100 TeV proton-proton collider.
Abstract: High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h -> Z Z_D -> 4l, and in Drell-Yan events, pp -> Z_D -> ll. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h -> Z_D Z_D -> 4l. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z_D, and can probe epsilon >~ 9 x 10^(-4) (4 x 10^(-4)) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h -> Z Z_D offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h -> Z_D Z_D can allow sensitivity to the Z_D for epsilon >~ 10^(-9) - 10^(-6) (10^(-10) - 10^(-7)) for the mass range 2 m_mu < m_(Z_D) < m_h/2 by searching for displaced dark photon decays. We also compare the Z_D sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude epsilon as low as 3 x 10^(-2). Sensitivity can be improved by up to a factor of ~2 with HL-LHC data, and an additional factor of ~4 with ILC/GigaZ data.

Journal ArticleDOI
TL;DR: In this article, a unified description of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the condensate.
Abstract: We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the condensate. We show that, in general, these states mix with repercussions on the electroweak physics and phenomenology. Our results will help clarify the main differences, similarities, benefits and shortcomings of the different ways one can naturally realize a composite nature of the electroweak sector of the Standard Model. We will analyze the minimal underlying realization in terms of fundamental strongly coupled gauge theories supporting the flavor symmetry breaking pattern SU(4)/Sp(4) ~ SO(6)/SO(5). The most minimal fundamental description consists of an SU(2) gauge theory with two Dirac fermions transforming according to the fundamental representation of the gauge group. This minimal choice enables us to use recent first principle lattice results to make the first predictions for the massive spectrum for models of composite (Goldstone) Higgs dynamics. These results are of the utmost relevance to guide searches of new physics at the Large Hadron Collider.


Journal ArticleDOI
TL;DR: In this article, the authors investigate the possibility of postulating a no-lose theorem for testing electroweak baryogenesis in future e+e-or hadron colliders.
Abstract: Electroweak Baryogenesis (EWBG) is a compelling scenario for explaining the matter-antimatter asymmetry in the universe. Its connection to the electroweak phase transition makes it inherently testable. However, completely excluding this scenario can seem difficult in practice, due to the sheer number of proposed models. We investigate the possibility of postulating a "no-lose" theorem for testing EWBG in future e+e- or hadron colliders. As a first step we focus on a factorized picture of EWBG which separates the sources of a stronger phase transition from those that provide new sources of CP violation. We then construct a "nightmare scenario" that generates a strong first-order phase transition as required by EWBG, but is very difficult to test experimentally. We show that a 100 TeV hadron collider is both necessary and possibly sufficient for testing the parameter space of the nightmare scenario that is consistent with EWBG.

Journal ArticleDOI
TL;DR: In this paper, the authors consider the simplest extension of the standard model with an additional real scalar SU(2)L - U(1)Y singlet and compute the electroweak precision parameter Δr, along with the corresponding theoretical prediction for the W-boson mass.
Abstract: The link between the electroweak gauge boson masses and the Fermi constant via the muon lifetime measurement is instrumental for constraining and eventually pinning down new physics. We consider the simplest extension of the standard model with an additional real scalar SU(2)L - U(1)Y singlet and compute the electroweak precision parameter Δr, along with the corresponding theoretical prediction for the W-boson mass. When confronted with the experimental W-boson mass measurement, our predictions impose limits on the singlet model parameter space. We identify regions, especially in the mass range which is accessible by the LHC, where these correspond to the most stringent experimental constraints that are currently available.

Journal ArticleDOI
TL;DR: The large tensor modes seen by BICEP2 suggest that fluctuations during inflation will destabilize the electroweak vacuum as discussed by the authors, which is not the case in the case of BiceP2.
Abstract: The large tensor modes seen by BICEP2 suggest that fluctuations during inflation will destabilize the electroweak vacuum.

Journal ArticleDOI
TL;DR: In this article, a general analysis of models with an axion and further axion-like particles (ALPs) with decay constants in the intermediate scale range, between 109 GeV and 1013 GeV, is presented.
Abstract: The recent detection of the cosmic microwave background polarimeter experiment BICEP2 of tensor fluctuations in the B-mode power spectrum basically excludes all plausible axion models where its decay constant is above 1013 GeV. Moreover, there are strong theoretical, astrophysical, and cosmological motivations for models involving, in addition to the axion, also axion-like particles (ALPs), with decay constants in the intermediate scale range, between 109 GeV and 1013 GeV. Here, we present a general analysis of models with an axion and further ALPs and derive bounds on the relative size of the axion and ALP photon (and electron) coupling. We discuss what we can learn from measurements of the axion and ALP photon couplings about the fundamental parameters of the underlying ultraviolet completion of the theory. For the latter we consider extensions of the Standard Model in which the axion and the ALP(s) appear as pseudo Nambu-Goldstone bosons from the breaking of global chiral U(1) (Peccei-Quinn (PQ)) symmetries, occurring accidentally as low energy remnants from exact discrete symmetries. In such models, the axion and the further ALP are protected from disastrous explicit symmetry breaking effects due to Planck-scale suppressed operators. The scenarios considered exploit heavy right handed neutrinos getting their mass via PQ symmetry breaking and thus explain the small mass of the active neutrinos via a seesaw relation between the electroweak and an intermediate PQ symmetry breaking scale. For a number of explicit models, we determine the parameters of the low-energy effective field theory describing the axion, the ALPs, and their interactions with photons and electrons, in terms of the input parameters, in particular the PQ symmetry breaking scales. We show that these models can accommodate simultaneously an axion dark matter candidate, an ALP explaining the anomalous transparency of the universe for γ-rays, and an ALP explaining the recently reported 3.55 keV gamma line from galaxies and clusters of galaxies, if the respective decay constants are of intermediate scale. Moreover, they do not suffer severely from the domain wall problem.

Journal ArticleDOI
TL;DR: In this paper, the kinematic distributions of Higgs boson and top quark decay products at the LHC were provided, and the integrated cross sections at the 14 TeV LHC and even at the future proton-proton colliders with s = 33 and 100 TeV were presented.

Journal ArticleDOI
TL;DR: In this paper, a simple extension of the Standard Model involving additional fermionic singlets and assuming an underlying inverse seesaw mechanism (with one or more right-handed neutrinos and oneor more sterile fermions) for neutrino mass generation is considered.

Journal ArticleDOI
TL;DR: A review of the most relevant ongoing experiments is given in this article, where a critical comparison of the future projects is proposed and most relevant parameters contributing to the experimental sensitivity are discussed.
Abstract: In the past ten years, neutrino oscillation experiments have provided the incontrovertible evidence that neutrinos mix and have finite masses. These results represent the strongest demonstration that the electroweak Standard Model is incomplete and that new Physics beyond it must exist. In this scenario, a unique role is played by the Neutrinoless Double Beta Decay searches which can probe lepton number conservation and investigate the Dirac/Majorana nature of the neutrinos and their absolute mass scale (hierarchy problem) with unprecedented sensitivity. Today Neutrinoless Double Beta Decay faces a new era where large-scale experiments with a sensitivity approaching the so-called degenerate-hierarchy region are nearly ready to start and where the challenge for the next future is the construction of detectors characterized by a tonne-scale size and an incredibly low background. A number of new proposed projects took up this challenge. These are based either on large expansions of the present experiments or on new ideas to improve the technical performance and/or reduce the background contributions. In this paper, a review of the most relevant ongoing experiments is given. The most relevant parameters contributing to the experimental sensitivity are discussed and a critical comparison of the future projects is proposed.

Journal ArticleDOI
TL;DR: In this article, the authors developed effective field theory techniques to analyze the heavy WIMP limit of WIMPs-nucleon scattering, and presented the first complete calculation of the leading spin-independent cross section in Standard Model extensions consisting of one or two electroweak $SU(2)_W \times U(1)_Y$ multiplets.
Abstract: The discovery of a Standard Model-like Higgs boson and the hitherto absence of evidence for other new states may indicate that if WIMPs comprise cosmological dark matter, they are heavy compared to electroweak scale particles, $M \gg m_{W^\pm}, m_{Z^0}$. In this limit, the absolute cross section for a WIMP of given electroweak quantum numbers to scatter from a nucleon becomes computable in terms of Standard Model parameters. We develop effective field theory techniques to analyze the heavy WIMP limit of WIMP-nucleon scattering, and present the first complete calculation of the leading spin-independent cross section in Standard Model extensions consisting of one or two electroweak $SU(2)_W \times U(1)_Y$ multiplets.

Journal ArticleDOI
TL;DR: In this paper, it was shown that the measured Higgs mass, couplings, and percent-level naturalness of the weak scale are compatible with stops at 3.5 TeV and higgsinos at 1 TeV.
Abstract: We show that naturalness of the weak scale can be comfortably reconciled with both LHC null results and observed Higgs properties provided the double protection of supersymmetry and the twin Higgs mechanism. This double protection radically alters conventional signs of naturalness at the LHC while respecting gauge coupling unification and precision electroweak limits. We find the measured Higgs mass, couplings, and percent-level naturalness of the weak scale are compatible with stops at ~ 3.5 TeV and higgsinos at ~ 1 TeV. The primary signs of naturalness in this scenario include modifications of Higgs couplings, a modest invisible Higgs width, resonant Higgs pair production, and an invisibly-decaying heavy Higgs.

Journal ArticleDOI
TL;DR: In this article, a framework for the calculation of the mixed QCD-electroweak O( α s α ) corrections to Drell-Yan processes in the resonance region is established.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the systematics of power counting in general effective field theories, focusing on those that are non-renormalizable at leading order, and show that naive dimensional analysis (NDA) is incomplete.

Journal ArticleDOI
TL;DR: In this article, the authors consider classically scale-invariant extensions of the Standard Model (CSI ESM) which stabilise the Higgs potential and have good dark matter candidates.
Abstract: We consider classically scale-invariant extensions of the Standard Model (CSI ESM ) which stabilise the Higgs potential and have good dark matter candidates. In this framework all mass scales, including electroweak and dark matter masses, are generated dynamically and have a common origin. We consider Abelian and non-Abelian hidden sectors portally coupled to the SM with and without a real singlet scalar. We perform a careful analysis of RG running to determine regions in the parameter space where the SM Higgs vacuum is stabilised. After combining this with the LHC Higgs constraints, in models without a singlet, none of the regained parameter space in Abelian ESMs, and only a small section in the non-Abelian ESM survives. However, in all singlet-extended models we find that the Higgs vacuum can be stabilised in all of the parameter space consistent with the LHC constraints. These models naturally contain two dark matter candidates: the real singlet and the dark gauge boson in non-Abelian models. We determine the viable range of parameters in the CSI ESM framework by computing the relic abundance, imposing direct detection constraints and combining with the LHC Higgs constraints. In addition to being instrumental in Higgs stabilisation, we find that the singlet component is required to explain the observed dark matter density.

Journal ArticleDOI
TL;DR: It is found that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering.
Abstract: We consider an effective field theory for a gauge singlet Dirac dark matter particle interacting with the standard model fields via effective operators suppressed by the scale Λ≳1 TeV. We perform a systematic analysis of the leading loop contributions to spin-independent Dirac dark matter–nucleon scattering using renormalization group evolution between Λ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are already significantly stronger than LHC bounds, and will improve in the near future. Interestingly, the loop contribution we find is isospin violating even if the underlying theory is isospin conserving.

Posted Content
TL;DR: In this paper, the authors consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension 6 operators on electroweak precondition tests that is more general than the standard $S,T$ formalism.
Abstract: We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard $S,T$ formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run~1. We illustrate the combined constraints with the example of the two-Higgs doublet model.