scispace - formally typeset
Search or ask a question

Showing papers on "Enterochromaffin cell published in 2019"


Journal ArticleDOI
21 Feb 2019-Cell
TL;DR: A novel knockin allele of Neurog3, the master regulator gene briefly expressed at the onset of enteroendocrine specification, is used to resolve transcriptional changes in real time at single-cell level and the time-resolved map of transcriptional Changes predicted multiple novel molecular regulators.

190 citations


Journal ArticleDOI
TL;DR: Evidence is found for reduced release of 5-HT from enteric neurons that results in defects in ENS development and GI motility and in mice studied with an analogous mutation, which results in a 60%-80% decrease in levels in central nervous system and behaviors associated with depression in humans.

86 citations


Journal ArticleDOI
TL;DR: It is demonstrated that bacterial cell components stimulate host 5- HT secretion and program the differentiation of colonic intestinal stem progenitors toward the secretory 5-HT-producing lineage, suggesting that the presence of C. ramosum in the gut promotes 5-hydroxytryptamine secretion and thereby could facilitates intestinal lipid absorption and the development of obesity.
Abstract: Peripheral serotonin (5-hydroxytryptamine: 5-HT) synthesized in the intestine by enterochromaffin cells (ECs), plays an important role in the regulation of peristaltic of the gut, epithelial secretion and promotes the development and maintenance of the enteric neurons. Recent studies showed that the indigenous gut microbiota modulates 5-HT signalling and that ECs use sensory receptors to detect dietary and microbiota-derived signals from the lumen to subsequently transduce the information to the nervous system. We hypothesized that Clostridium ramosum by increasing gut 5-HT availability consequently contributes to high-fat diet-induced obesity. Using germ-free mice and mice monoassociated with C. ramosum, intestinal cell lines and mouse organoids, we demonstrated that bacterial cell components stimulate host 5-HT secretion and program the differentiation of colonic intestinal stem progenitors toward the secretory 5-HT-producing lineage. An elevated 5-HT level regulates the expression of major proteins involved in intestinal fatty acid absorption in vitro, suggesting that the presence of C. ramosum in the gut promotes 5-HT secretion and thereby could facilitates intestinal lipid absorption and the development of obesity.

77 citations


Journal ArticleDOI
TL;DR: EECs in the large intestine exhibit differential expression gradients along the crypt-surface and proximal-distal axes, and can be differentially stimulated by targeting receptors such as Agtr1a.
Abstract: Objective Enteroendocrine cells (EECs) of the large intestine, found scattered in the epithelial layer, are known to express different hormones, with at least partial co-expression of different hormones in the same cell. Here we aimed to categorize colonic EECs and to identify possible targets for selective recruitment of hormones. Methods Single cell RNA-sequencing of sorted enteroendocrine cells, using NeuroD1-Cre x Rosa26-EYFP mice, was used to cluster EECs from the colon and rectum according to their transcriptome. G-protein coupled receptors differentially expressed across clusters were identified, and, as a proof of principle, agonists of Agtr1a and Avpr1b were tested as candidate EEC secretagogues in vitro and in vivo. Results EECs from the large intestine separated into 7 clear clusters, 4 expressing higher levels of Tph1 (enzyme required for serotonin (5-HT) synthesis; enterochromaffin cells), 2 enriched for Gcg (encoding glucagon-like peptide-1, GLP-1, L-cells), and the 7th expressing somatostatin (D-cells). Restricted analysis of L-cells identified 4 L-cell sub-clusters, exhibiting differential expression of Gcg, Pyy (Peptide YY), Nts (neurotensin), Insl5 (insulin-like peptide 5), Cck (cholecystokinin), and Sct (secretin). Expression profiles of L- and enterochromaffin cells revealed the clustering to represent gradients along the crypt-surface (cell maturation) and proximal-distal gut axes. Distal colonic/rectal L-cells differentially expressed Agtr1a and the ligand angiotensin II was shown to selectively increase GLP-1 and PYY release in vitro and GLP-1 in vivo. Conclusion EECs in the large intestine exhibit differential expression gradients along the crypt-surface and proximal-distal axes. Distal L-cells can be differentially stimulated by targeting receptors such as Agtr1a.

69 citations


Journal ArticleDOI
TL;DR: Combining HIEs and inducible-NGN3 expression is combined to establish a flexible in vitro model system for functional studies of EECs in enteroids and advance the molecular and physiological investigation of E ECs.
Abstract: Background & Aims Enteroendocrine cells (EECs) are specialized epithelial cells that produce molecules vital for intestinal homeostasis, but because of their limited numbers, in-depth functional studies have remained challenging. Human intestinal enteroids (HIEs) that are derived from intestinal crypt stem cells are biologically relevant in an in vitro model of the intestinal epithelium. HIEs contain all intestinal epithelial cell types; however, similar to the intestine, HIEs spontaneously produce few EECs, which limits their study. Methods To increase the number of EECs in HIEs, we used lentivirus transduction to stably engineer jejunal HIEs with doxycycline-inducible expression of neurogenin-3 (NGN3), a transcription factor that drives EEC differentiation (tetNGN3-HIEs). We examined the impact of NGN3 induction on EECs by quantifying the increase in the enterochromaffin cells and other EEC subtypes. We functionally assessed secretion of serotonin and EEC hormones in response to norepinephrine and rotavirus infection. Results Treating tetNGN3-HIEs with doxycycline induced a dose-dependent increase of chromogranin A (ChgA)-positive and serotonin-positive cells, showing increased enterochromaffin cell differentiation. Despite increased ChgA-positive cells, other differentiated cell types of the epithelium remained largely unchanged by gene expression and immunostaining. RNA sequencing of doxycycline-induced tetNGN3-HIEs identified increased expression of key hormones and enzymes associated with several other EEC subtypes. Doxycycline-induced tetNGN3-HIEs secreted serotonin, monocyte chemoattractant protein-1, glucose-dependent insulinotropic peptide, peptide YY, and ghrelin in response to norepinephrine and rotavirus infection, further supporting the presence of multiple EEC types. Conclusions We have combined HIEs and inducible-NGN3 expression to establish a flexible in vitro model system for functional studies of EECs in enteroids and advance the molecular and physiological investigation of EECs.

57 citations


Journal ArticleDOI
TL;DR: Recent findings demonstrate that endogenous 5-HT released from the mucosa or enteric neurons is not required for the generation of major neurogenic motor patterns, at least in the large intestine, but that it likely acts as a modulator of contractile frequency.

49 citations


Journal ArticleDOI
TL;DR: The distribution of serotonergic components in cells of the immune system and the impact of platelet-derived serotonin on these cells are described to understand the effect of serotonin on immune cell recruitment to sites of inflammation.
Abstract: Serotonin (5-Hydroxytryptamine, 5-HT) was discovered as a vasoconstrictor in 1937. Since its discovery, the involvement of serotonin in numerous physiological processes was described. It acts as an important neurotransmitter, regulates bowel movement, can be released as a tissue hormone and acts as a growth factor. Among the years, a link between serotonin and inflammation has been identified and further evidence suggests an important role of serotonergic components in immune responses. Peripheral serotonin is synthesized by the enzyme tryptophan hydroxylase (Tph), which exists in two different isoforms: Tph2 being responsible for serotonin synthesis in neurons and Tph1 for generation of serotonin in peripheral organs. After synthesis in intestinal enterochromaffin cells, serotonin is stored in platelets and released upon stimulation. Several immune cells express the serotonin transporter SERT and enzymes for serotonin metabolism (monoamine oxygenase, MAO). To be susceptible to changes in serotonin levels, serotonin receptors are required and almost all of the 15 receptor subtypes are represented on immune cells. In this review, we describe the distribution of serotonergic components in cells of the immune system and the impact of platelet-derived serotonin on these cells. In particular, we aim to understand the effect of serotonin on immune cell recruitment to sites of inflammation.

37 citations


Journal ArticleDOI
TL;DR: It is shown that early life stress leads to expansion of intestinal stem cells and their differentiation into serotonin-producing enterochromaffin cells through crosstalk between NGF and Wnt signalling pathways.
Abstract: Early childhood is a critical period for development, and early life stress may increase the risk of gastrointestinal diseases including irritable bowel syndrome (IBS). In rodents, neonatal maternal separation (NMS) induces bowel dysfunctions that resemble IBS. However, the underlying mechanisms remain unclear. Here we show that NMS induces expansion of intestinal stem cells (ISCs) and their differentiation toward secretory lineages including enterochromaffin (EC) and Paneth cells, leading to EC hyperplasia, increased serotonin production, and visceral hyperalgesia. This is reversed by inhibition of nerve growth factor (NGF)-mediated tropomyosin receptor kinase A (TrkA) signalling, and treatment with NGF recapitulates the intestinal phenotype of NMS mice in vivo and in mouse intestinal organoids in vitro. Mechanistically, NGF transactivates Wnt/β-catenin signalling. NGF and serotonin are positively correlated in the sera of diarrhea-predominant IBS patients. Together, our findings provide mechanistic insights into early life stress-induced intestinal changes that may translate into treatments for gastrointestinal diseases.

36 citations


Journal ArticleDOI
TL;DR: The role of the transcription factor Rfx6 is identified as an essential transcriptional regulator of EECs specification and shed light on the molecular mechanisms of intestinal failures in human RFX6-deficiencies such as Mitchell–Riley syndrome.
Abstract: Objective Enteroendocrine cells (EECs) of the gastro-intestinal tract sense gut luminal factors and release peptide hormones or serotonin (5-HT) to coordinate energy uptake and storage. Our goal is to decipher the gene regulatory networks controlling EECs specification from enteroendocrine progenitors. In this context, we studied the role of the transcription factor Rfx6 which had been identified as the cause of Mitchell–Riley syndrome, characterized by neonatal diabetes and congenital malabsorptive diarrhea. We previously reported that Rfx6 was essential for pancreatic beta cell development and function; however, the role of Rfx6 in EECs differentiation remained to be elucidated. Methods We examined the molecular, cellular, and metabolic consequences of constitutive and conditional deletion of Rfx6 in the embryonic and adult mouse intestine. We performed single cell and bulk RNA-Seq to characterize EECs diversity and identify Rfx6-regulated genes. Results Rfx6 is expressed in the gut endoderm; later, it is turned on in, and restricted to, enteroendocrine progenitors and persists in hormone-positive EECs. In the embryonic intestine, the constitutive lack of Rfx6 leads to gastric heterotopia, suggesting a role in the maintenance of intestinal identity. In the absence of intestinal Rfx6, EECs differentiation is severely impaired both in the embryo and adult. However, the number of serotonin-producing enterochromaffin cells and mucosal 5-HT content are increased. Concomitantly, Neurog3-positive enteroendocrine progenitors accumulate. Combined analysis of single-cell and bulk RNA-Seq data revealed that enteroendocrine progenitors differentiate in two main cell trajectories, the enterochromaffin (EC) cells and the Peptidergic Enteroendocrine (PE) cells, the differentiation programs of which are differentially regulated by Rfx6. Rfx6 operates upstream of Arx, Pax6 and Isl1 to trigger the differentiation of peptidergic EECs such as GIP-, GLP-1-, or CCK-secreting cells. On the contrary, Rfx6 represses Lmx1a and Tph1, two genes essential for serotonin biosynthesis. Finally, we identified transcriptional changes uncovering adaptive responses to the prolonged lack of enteroendocrine hormones and leading to malabsorption and lower food efficiency ratio in Rfx6-deficient mouse intestine. Conclusion These studies identify Rfx6 as an essential transcriptional regulator of EECs specification and shed light on the molecular mechanisms of intestinal failures in human RFX6-deficiencies such as Mitchell–Riley syndrome.

31 citations


Journal ArticleDOI
10 Jul 2019
TL;DR: Investigating the association between 5-HTT gene-linked polymorphic region (5HTTLPR) and Crohn’s disease and CD revealed important information on various components of 5- HT signaling in intestinal inflammation which may ultimately lead to effective strategies targeting this pathway in IBD.
Abstract: Background Tryptophan hydroxylase (TPH)1 catalyzes the biosynthesis of serotonin (5-hydroxytrptamine; 5-HT) in enterochromaffin (EC) cells, the predominant source of gut 5-HT. Secreted 5-HT regulates various gut functions through diverse 5-HT receptor (5-HTR) families, and 5-HT transporter (5-HTT) sequesters its activity via uptake into surrounding cells. In inflammatory bowel disease (IBD) mucosal 5-HT signaling is altered, including upregulated EC cell numbers and 5-HT levels. We examined key mucosal 5-HT signaling components and blood 5-HT levels and, as part of a pilot study, investigated the association between 5-HTT gene-linked polymorphic region (5HTTLPR) and Crohn's disease (CD). Methods In the context of inflammation, colonic expressions of TPH1, 5-HTT and 5-HTRs were studied in CD patients (n=15) and healthy controls (HC; n=10) using quantitative polymerase chain reaction (qPCR). We also investigated 5HTTLPR in 40 CD patients and HC utilizing PCR and measured platelet-poor plasma (PPP) and plasma 5-HT concentrations. Results Compared with HC, inflammation in CD patients was associated with elevated TPH1, 5-HTR3, 5-HTR4, 5-HTR7 and downregulated 5-HTT expressions. In our second cohort of participants, significantly higher PPP and plasma 5-HT levels and higher S-genotype (L/S+S/S) than L/L genotype were observed in CD patients compared with HC. Conclusion Our results suggest that augmented mucosal 5-HT signaling and specific 5-HTTLPR genotype-associated decreased efficiency in 5-HT reuptake, the latter through increased 5-HT availability, may contribute to inflammation in CD patients. These findings revealed important information on various components of 5-HT signaling in intestinal inflammation which may ultimately lead to effective strategies targeting this pathway in IBD.

29 citations


Journal ArticleDOI
TL;DR: It is indicated that the analgesic effect of quercetin on PI-IBS may result from reduction of 5-HT availability in the colon, and the regulatory role of quERCetin in endocrine progenitors may contribute to reduced EC cells.
Abstract: Intestinal enterochromaffin (EC) cell hyperplasia and increased 5-hydroxytryptamine (5-HT) availability play key roles in the pathogenesis of abdominal hypersensitivity of irritable bowel syndrome (IBS). This study aims to study the effect of quercetin on visceral pain and 5-HT availability in postinflammatory IBS (PI-IBS) rats. PI-IBS model rats were administered quercetin by gavage at doses of 5, 10, and 20 mg/kg for 14 days. Compared with normal rats, the visceral pain threshold of PI-IBS rats was markedly decreased and the abdominal motor response to colon distension was markedly increased. The EC cell count and 5-HT level, as well as tryptophan hydroxylase (TPH) protein, were all significantly elevated in PI-IBS rats, while the 5-HT reuptake transporter (serotonin transporter) was reduced. Genes that are responsible for enteroendocrine cell differentiation, that is, Ngn3 and pdx1, were significantly increased in the PI-IBS group. Quercetin treatment markedly elevated the pain threshold pressure and decreased the visceral motor response of PI-IBS animals; and EC cell density and 5-HT level, as well as TPH expression, in the PI-IBS group were all reduced by quercetin. Quercetin treatment also significantly reduced colonic expression of Ngn3 and pdx1 of PI-IBS. Findings from the present study indicated that the analgesic effect of quercetin on PI-IBS may result from reduction of 5-HT availability in the colon, and the regulatory role of quercetin in endocrine progenitors may contribute to reduced EC cells.

Journal ArticleDOI
TL;DR: The possible role of serotonin in hematopoietic diseases, and whether targeting the serotonergic system could be of therapeutic value for the regulation of normal and pathological he matopoiesis are discussed.

Journal ArticleDOI
TL;DR: The findings suggest an important role of TLR2 in mucosal 5-HT production in the gut by resident microbiota as well as by a nematode parasite, and provide novel information on the potential benefits of targeting TLR1 or TLR4 in various gut disorders that exhibit aberrant 5- HT signaling.
Abstract: Serotonin (5-hydroxytryptamine [5-HT]) is a key enteric signaling molecule that mediates various physiological processes in the gut. Enterochromaffin (EC) cells in the mucosal layer of the gut are the main source of 5-HT in the body and are situated in close proximity to the gut microbiota. In this study, we identify a pivotal role of TLR2 in 5-HT production in the gut. Antibiotic treatment reduces EC cell numbers and 5-HT levels in naive C57BL/6 mice, which is associated with downregulation of TLR2 expression but not TLR1 or TLR4. TLR2-deficient (Tlr2 -/-) and Myd88 -/- mice express lower EC cell numbers and 5-HT levels, whereas treatment with TLR2/1 agonist upregulates 5-HT production in irradiated C57BL/6 mice, which are reconstituted with Tlr2 -/- bone marrow cells, and in germ-free mice. Human EC cell line (BON-1 cells) release higher 5-HT upon TLR2/1 agonist via NF-κB pathway. Tlr2 -/- mice and anti-TLR2 Ab-treated mice infected with enteric parasite, Trichuris muris, exhibited attenuated 5-HT production, compared with infected wild-type mice. Moreover, excretory-secretory products from T. muris induce higher 5-HT production in BON-1 cells via TLR2 in a dose-dependent manner, whereby the effect of excretory-secretory products is abrogated by TLR2 antagonist. These findings not only suggest an important role of TLR2 in mucosal 5-HT production in the gut by resident microbiota as well as by a nematode parasite but also provide, to our knowledge, novel information on the potential benefits of targeting TLR2 in various gut disorders that exhibit aberrant 5-HT signaling.

Journal ArticleDOI
TL;DR: The trophic effect of gastrin on the ECL cell has implications to the treatment with inhibitors of acid secretion, implying that gastric hypoacidity resulting in increased gastrin release will induce gastric neoplasia, including gastric cancer.
Abstract: Background: Studies on the regulation of gastric and pancreatic secretion began more than 100 years ago. Secretin was the first hormone postulated to exist, initiating the field of endocrinology. Gastrin produced in the antral mucosa was the second postulated hormone, and together with histamine and acetylcholine, represent the three major gastric acid secretagogues known since 1920. For a long time, the mast cell was the only recognized histamine-producing cell in the oxyntic mucosa and, in the mid-1980s, the ECL cell was recognized as the cell producing histamine, taking part in the regulation of gastric acid secretion. Methods: This review is based upon literature research and personal knowledge. Results: The ECL cell carries the gastrin receptor, and gastrin regulates its function (histamine release) as well as proliferation. Long-term hypergastrinemia results in gastric neoplasia of variable malignancies, implying that gastric hypoacidity resulting in increased gastrin release will induce gastric neoplasia, including gastric cancer. Conclusions: The trophic effect of gastrin on the ECL cell has implications to the treatment with inhibitors of acid secretion.

Journal ArticleDOI
TL;DR: In the lower gastrointestinal tract, mesenchymal TRPA1 activation results in PGE2 release and consequently promotes colorectal contraction, representing what the authors believe is a novel physiological and inflammatory bowel disease-associated mechanism of gastrointestinal motility.
Abstract: The physiological process of defecation is directly controlled by colorectal motility. The transient receptor potential ankyrin 1 (TRPA1) channel is expressed in small intestine enterochromaffin cells and is involved in gastrointestinal motility via serotonin release. In the colorectum, however, enterochromaffin cell localization is largely distinct from that in the small intestine. Here, we investigated the role of lower gastrointestinal tract TRPA1 in modulating colorectal motility. We found that in colonic tissue, TRPA1 is predominantly expressed in mesenchymal cells of the lamina propria, which are clearly distinct from those in the small intestine. These cells coexpressed COX1 and microsomal prostaglandin E synthase-1. Intracolonic administration of TRPA1 agonists induced colonic contraction, which was suppressed by a prostaglandin E2 (PGE2) receptor 1 antagonist. TRPA1 activation induced calcium influx and PGE2 release from cultured human fibroblastic cells. In dextran sulfate sodium-treated animals, both TRPA1 and its endogenous agonist were dramatically increased in the colonic lamina propria, accompanied by abnormal colorectal contractions. Abnormal colorectal contractions were significantly prevented by pharmacological and genetic inhibition of TRPA1. In conclusion, in the lower gastrointestinal tract, mesenchymal TRPA1 activation results in PGE2 release and consequently promotes colorectal contraction, representing what we believe is a novel physiological and inflammatory bowel disease-associated mechanism of gastrointestinal motility.

Journal ArticleDOI
TL;DR: It is demonstrated that primary human EC cells respond directly to dietary glucose cues, with regional differences in selectivity for other sugars.
Abstract: Gut-derived serotonin (5-HT) is released from enterochromaffin (EC) cells in response to nutrient cues, and acts to slow gastric emptying and modulate gastric motility. Rodent studies also evidence a role for gut-derived 5-HT in the control of hepatic glucose production, lipolysis and thermogenesis, and in mediating diet-induced obesity. EC cell number and 5-HT content is increased in the small intestine of obese rodents and human, however, it is unknown whether EC cells respond directly to glucose in humans, and whether their capacity to release 5-HT is perturbed in obesity. We therefore investigated 5-HT release from human duodenal and colonic EC cells in response to glucose, sucrose, fructose and α-glucoside (αMG) in relation to body mass index (BMI). EC cells released 5-HT only in response to 100 and 300 mM glucose (duodenum) and 300 mM glucose (colon), independently of osmolarity. Duodenal, but not colonic, EC cells also released 5-HT in response to sucrose and αMG, but did not respond to fructose. 5-HT content was similar in all EC cells in males, and colonic EC cells in females, but 3 to 4-fold higher in duodenal EC cells from overweight females (p < 0.05 compared to lean, obese). Glucose-evoked 5-HT release was 3-fold higher in the duodenum of overweight females (p < 0.05, compared to obese), but absent here in overweight males. Our data demonstrate that primary human EC cells respond directly to dietary glucose cues, with regional differences in selectivity for other sugars. Augmented glucose-evoked 5-HT release from duodenal EC is a feature of overweight females, and may be an early determinant of obesity.

Journal ArticleDOI
01 Jun 2019-Diabetes
TL;DR: An unexpected role of ZnT8 in regulating peripheral 5-HT biogenesis and intestinal microenvironment is revealed, which might contribute to the increased risk of obesity and type 2 diabetes.
Abstract: ZnT8 is a zinc transporter enriched in pancreatic β-cells, and its polymorphism is associated with increased susceptibility to type 2 diabetes. However, the exact role of ZnT8 in systemic energy metabolism remains elusive. In this study, we found that ZnT8 knockout mice displayed increased adiposity without obvious weight gain. We also observed that the intestinal tract morphology, motility, and gut microbiota were changed in ZnT8 knockout mice. Further study demonstrated that ZnT8 was expressed in enteroendocrine cells, especially in 5-hydroxytryptamine (5-HT)-positive enterochromaffin cells. Lack of ZnT8 resulted in an elevated circulating 5-HT level owing to enhanced expression of tryptophan hydroxylase 1. Blocking 5-HT synthesis in ZnT8-deficient mice restored adiposity, high-fat diet-induced obesity, and glucose intolerance. Moreover, overexpression of human ZnT8 diabetes high-risk allele R325W increased 5-HT levels relative to the low-risk allele in RIN14B cells. Our study revealed an unexpected role of ZnT8 in regulating peripheral 5-HT biogenesis and intestinal microenvironment, which might contribute to the increased risk of obesity and type 2 diabetes.

Posted ContentDOI
19 Jul 2019-bioRxiv
TL;DR: The role of the transcription factor Rfx6 is identified as an essential transcriptional regulator of EECs specification and shed light on the molecular mechanisms of intestinal failures in human RFX6-deficiencies such as Mitchell-Riley syndrome.
Abstract: Objective Enteroendocrine cells (EECs) of the gastro-intestinal tract sense gut luminal factors and release peptide hormones or serotonin (5-HT) to coordinate energy uptake and storage. Our goal is to decipher the gene regulatory networks controlling EECs specification from enteroendocrine progenitors. In this context, we studied the role of the transcription factor Rfx6 which had been identified as the cause of Mitchell-Riley syndrome characterized by neonatal diabetes and congenital malabsorptive diarrhea. We previously reported that Rfx6 was essential for pancreatic beta cell development and function, however, the role of Rfx6 in EECs differentiation remained to be elucidated. Methods We examined the molecular, cellular and metabolic consequences of constitutive and conditional deletion of Rfx6 in the embryonic and adult mouse intestine. We performed single cell and bulk RNA-Seq to characterize EECs diversity and identify Rfx6-regulated genes. Results Rfx6 is expressed in the gut endoderm; later it is turned on in, and restricted to, enteroendocrine progenitors and persists in hormone-positive EECs. In the embryonic intestine, the constitutive lack of Rfx6 leads to gastric heterotopia, suggesting a role in the maintenance of intestinal identity. In the absence of intestinal Rfx6, EECs differentiation is severely impaired both in the embryo and adult. However, the number of serotonin-producing enterochromaffin cells and mucosal 5-HT content are increased. Concomitantly, Neurog3-positive enteroendocrine progenitors accumulate. Combined analysis of single-cell and bulk RNA-Seq data revealed that enteroendocrine progenitors differentiate in two main cell trajectories, the enterochromaffin (EC) cells and the Peptidergic Enteroendocrine (PE) cells, whose differentiation programs are differentially regulated by Rfx6. Rfx6 operates upstream of Arx, Pax6 and Isl1 to trigger the differentiation of peptidergic EECs such as GIP-, GLP-1- or CCK-secreting cells. On the contrary, Rfx6 represses Lmx1a and Tph1, two genes essential for serotonin biosynthesis. Finally, we identified transcriptional changes uncovering adaptive responses to the prolonged lack of enteroendocrine hormones and leading to malabsorption and lower food efficiency ratio in Rfx6-deficient mouse intestine. Conclusion These studies identify Rfx6 as an essential transcriptional regulator of EECs specification and shed light on the molecular mechanisms of intestinal failures in human RFX6-deficiencies such as Mitchell-Riley syndrome.

Journal ArticleDOI
TL;DR: It is shown that EC cell hyperplasia was observed under the condition of physiological stress, intestinal infection or intestinal inflammation, the disordered proliferation and/or differentiation of intestinal stem cells as well as their progenitor cells all contribute to the pathogenesis of intestinal EC cellhyperplasia.

Posted ContentDOI
16 Mar 2019-bioRxiv
TL;DR: Combining HIEs and inducible-NGN3 expression is combined to establish a flexible in vitro model system for functional studies of EECs in enteroids and advance the molecular and physiological investigation of E ECs.
Abstract: Background Enteroendocrine cells (EECs) are specialized epithelial cells that produce molecules vital for intestinal homeostasis, but due to their limited numbers, in-depth functional studies have remained challenging. Human intestinal enteroids (HIEs) that are derived from intestinal crypt stem cells are a biologically relevant in vitro model of the intestinal epithelium. HIEs contain all intestinal epithelial cell types; however, like the intestine, HIEs spontaneously produce few EECs, which limits their study. Methods To increase the number of EECs in HIEs, we used lentivirus transduction to stably engineer jejunal HIEs with doxycycline-inducible expression of neurogenin-3 (NGN3), a transcription factor that drives EEC differentiation (tetNGN3-HIEs). We examined the impact of NGN3 induction on EECs by quantifying the increase in the enterochromaffin cells and other EEC subtypes. We functionally assessed secretion of serotonin and EEC hormones in response to norepinephrine and rotavirus infection. Results Treating tetNGN3-HIEs with doxycycline induced a dose-dependent increase of chromogranin A (ChgA)-positive and serotonin-positive cells, demonstrating increased enterochromaffin cell differentiation. Despite increased ChgA-positive cells, other differentiated cell types of the epithelium remained largely unchanged by gene expression and immunostaining. RNA sequencing of doxycycline-induced tetNGN3- HIEs identified increased expression of key hormones and enzymes associated with several other EEC subtypes. Doxycycline-induced tetNGN3-HIEs secreted serotonin, monocyte chemoattractant protein-1, glucose-dependent insulinotropic peptide, peptide YY, and ghrelin in response to norepinephrine and rotavirus infection, further supporting the presence of multiple EEC types. Conclusions We have combined HIEs and inducible-NGN3 expression to establish a flexible in vitro model system for functional studies of EECs in enteroids and advance the molecular and physiological investigation of EECs. Synopsis Enteroendocrine cells have low abundance but exert widespread effects on gastrointestinal physiology. We engineered human intestinal enteroids with inducible expression of neurogenin-3, resulting in increased enteroendocrine cells and facilitating investigations of host responses to the dynamic intestinal environment.

Journal ArticleDOI
TL;DR: DCLK1/5HT-IR cells constitute a novel subset of tuft cells that may have unique roles in the GI tract and were not found to contain TPH, the rate-limiting enzyme in 5HT synthesis.
Abstract: In this study, a novel subset of doublecortin-like kinase 1 (DCLK1)-immunoreactive (IR) tuft cells that also contain serotonin (5-hydroxytryptamine, 5HT) is described, in terms of their number, regional distribution, possible synthesis or reuptake of 5HT and proximity to 5-HT-containing enterochromaffin (EC) cells. The small intestine from C57BL/6J mice was divided into five segments while the large intestine was kept undivided. Double immunostaining was used to estimate numbers and topographic distribution of 5HT-IR (DCLK1/5HT) tuft cells and their possible expression of tryptophan hydroxylase (TPH) and serotonin transporter (SERT). Also, possible contacts between tuft cells and 5HT-IR EC cells were studied. In the small intestine, up to 80% of all tuft cells were identified as DCLK1/5HT-IR; in the large intestine, such cells were rare. The highest number of DCLK1/5HT-IR cells was found in the upper small intestine. The numbers of DCLK1/5HT-IR cells gradually decreased distally. DCLK1-IR tuft cells were not found to contain TPH, the rate-limiting enzyme in 5HT synthesis. SERT, the selective transporter for 5HT reuptake, could not convincingly be demonstrated in tuft cells. In villi and crypts, 3% and 10%, respectively, of all DCLK1-IR cells were in close proximity to EC cells. EC cells in close proximity to DCLK1-IR cells were, in villi and crypts, 3 and 8%, respectively. We conclude that DCLK1/5HT-IR cells constitute a novel subset of tuft cells that may have unique roles in the GI tract.

Journal ArticleDOI
15 Dec 2019
TL;DR: Melatonin synthesized by the EC cells provides the onsite protection in GI tract since this molecule is the potent free radical scavenger and effective ant-inflammatory agent.
Abstract: The enteroendocrine cells in gastrointestinal (GI) tract synthesize more than thirty hormones in mammals. Among these cells, the enterochromaffin (EC) cells are probably the most important one due to the fact that they produce melatonin. The rate-limiting enzymes for melatonin synthesis including arylalkylamine-N-acetyltransferase (AANAT, currently the SNAT) and hydroxyindole-O-methyltransferase (HIOMT, currently the ASMT) have been identified in EC cells and this has confirmed the local melatonin production in GI tract by these cells. EC cells play a critical role in regulation of gastrointestinal physiology, particularly, in protection of the GI tract from free radical attack and inflammatory reaction. GI tract is the major site exposed to the oxidative stress and inflammation because of the food residue metabolism and the presence of trillions of microbes including the pathological bacteria. Thus, it requires strong protection. Melatonin synthesized by the EC cells provides the onsite protection in GI tract since this molecule is the potent free radical scavenger and effective ant-inflammatory agent. In this review we summarize the available information regarding the structural and functional variability of the EC cells as well as their pathophysiological roles in the GI tract. The focus is given to the protective effects of melatonin produced by the EC cells on the oxidative stress, inflammation and microbiota balance in GI tract.

Journal ArticleDOI
TL;DR: A protocol to culture SBNET cells from surgically removed tumors as spheroids in extracellular matrix (ECM) and described methods to identify SBNET markers using immunofluorescence microscopy and immunohistochemistry to confirm that the sp Heroids are neuroendocrine tumor cells.
Abstract: Small bowel neuroendocrine tumors (SBNETs) are rare cancers originating from enterochromaffin cells of the gut. Research in this field has been limited because very few patient derived SBNET cell lines have been generated. Well-differentiated SBNET cells are slow growing and are hard to propagate. The few cell lines that have been established are not readily available, and after time in culture may not continue to express characteristics of NET cells. Generating new cell lines could take many years since SBNET cells have a long doubling time and many enrichment steps are needed in order to eliminate the rapidly dividing cancer-associated fibroblasts. To overcome these limitations, we have developed a protocol to culture SBNET cells from surgically removed tumors as spheroids in extracellular matrix (ECM). The ECM forms a 3-dimensional matrix that encapsulates SBNET cells and mimics the tumor micro-environment for allowing SBNET cells to grow. Here, we characterized the growth rate of SBNET spheroids and described methods to identify SBNET markers using immunofluorescence microscopy and immunohistochemistry to confirm that the spheroids are neuroendocrine tumor cells. In addition, we used SBNET spheroids for testing the cytotoxicity of rapamycin.

Journal ArticleDOI
TL;DR: It is suggested that NO derived from methotrexate-induced iNOS plays a critical role in the mechanism of hyperplasia of enterochromaffin cells containing 5-HT in the intestinal tissue of rats.

Journal ArticleDOI
TL;DR: Serotonin 3 receptor signaling regulates 5‐fluorouracil‐mediated apoptosis indirectly via TNF‐α production by enhancing serotonin release from enterochromaffin cells, which in turn enhances apoptotic activities induced by 5‐FU.
Abstract: Antagonists of the 5-hydroxytryptamine (serotonin) 3 receptor (5-HT3R) have anti-inflammatory and anti-apoptotic activities, but the detailed, underlying mechanisms are not well understood. We focused on anti-apoptotic activities via 5-HT3R signaling to clarify the underlying mechanisms. Mice were administered 5-fluorouracil (5-FU), which induced apoptosis in intestinal epithelial cells. Coadministration with 5-HT3R antagonists or agonists tended to decrease or increase the number of apoptotic cells, respectively. In serotonin 3A receptor (5-HT3AR) null (HTR3A-/-) mice, the number of apoptotic cells induced by 5-FU was decreased compared with that in wild-type (WT) mice. Bone marrow (BM) transplantation was performed to determine if BM-derived immune cells regulated 5-FU-induced apoptosis, but they were found to be unrelated to this process. Data from 5-HT3AR/enhanced green fluorescent protein reporter mice revealed that 50% of enterochromaffin (EC) cells expressed 5-HT3AR, but the number of apoptotic cells induced by 5-FU in the intestinal crypt organoids of HTR3A-/- mice was not altered compared with WT mice. In contrast, plasma 5-HT concentrations in WT mice but not in HTR3A-/- mice administered 5-FU were increased significantly. In conclusion, 5-HT3R signaling may enhance 5-HT release, possibly from EC cells intravascularly, or paracrine, resulting in increases in plasma 5-HT concentration, which in turn, enhances apoptotic activities induced by 5-FU.-Mikawa, S., Kondo, M., Kaji, N., Mihara, T., Yoshitake, R., Nakagawa, T., Takamoto, M., Nishimura, R., Shimada, S., Ozaki, H., Hori, M. Serotonin 3 receptor signaling regulates 5-fluorouracil-mediated apoptosis indirectly via TNF-α production by enhancing serotonin release from enterochromaffin cells.

Journal ArticleDOI
TL;DR: The roles of NGF in driving IBS and its potential clinical implications, outstanding questions in how psychological stimuli are transduced into physical phenotypes, as well as future directions of the findings are addressed.
Abstract: Environmental stressors in early childhood can have a detrimental impact later in life, manifesting in functional gastrointestinal disorders including irritable bowel syndrome (IBS). The phenomenon is also observed in rodents, where neonatal-maternal separation, a model of early life stress, induces phenotypes similar to IBS; however, the underlying mechanisms remain unelucidated. Our recent study provided a mechanism for the pathogenesis in the gut, demonstrating that increased visceral hyperalgesia resulted from the expansion of the intestinal stem cell compartment leading to increased differentiation and proliferation of serotonin (5-hydroxytryptamine/5-HT)-producing enterochromaffin cells. Moreover, it identified nerve growth factor (NGF) as a key mediator of the pathogenesis; surprisingly, it exerts its effect via cross talk with Wnt/β-catenin signaling. This article addresses the roles of NGF in driving IBS and its potential clinical implications, outstanding questions in how psychological stimuli are transduced into physical phenotypes, as well as future directions of our findings. Abbreviations: 5-HT: 5-hydroxytryptamine/serotonin; BDNF: brain-derived neurotrophic factor; CRF: corticotrophin-releasing factor; EC: enterochromaffin; ENS: enteric nervous system; GI: gastrointestinal; GPCR: G-protein-coupled receptor; IBS (-D): irritable bowel syndrome (diarrhea predominant); LRP5/6: low-density lipoprotein receptor-related protein 5/6; MAPK: mitogen-activated protein kinase; NGF: nerve growth factor; NMS: neonatal-maternal separation; PI3K: phosphoinositode3-kinase; PLCγ: phospholipase c, gamma subtype; TrkA: tropomyosin receptor kinase A.

Journal ArticleDOI
TL;DR: It is shown that histamine synergistically enhances the intracellular calcium response to the physiological agonist acetylcholine in human ileal enterochromaffin tumor cells and is inhibited by the antispasmodic otilonium bromide.
Abstract: We show that histamine synergistically enhances the intracellular calcium response to the physiological agonist acetylcholine in human ileal enterochromaffin tumor cells. This synergistic activatio...

Journal ArticleDOI
TL;DR: It is suggested that quercetin supplementation mostly improved the serotonergic function affected by diabetes maybe due to antioxidant and anti-inflammatory properties of quercETin.
Abstract: BACKGROUND: Serotonin (5-HT) is present in the epithelial enterochromaffin cells (EC), mast cells of the lamina propria and enteric neurons. The 5-HT is involved in regulating motility, secretion, gut sensation, immune system and inflammation. OBJECTIVE: Evaluate the effects of diabetes and quercetin supplementation on serotoninergic cells and its cell loss by apoptosis in jejunal mucosa of streptozotocin-induced diabetic rats (STZ-rats). METHODS: Twenty-four male Wistar rats were divided into four groups: normoglycemic (C), normoglycemic supplemented with 40 mg/day quercetin (Q), diabetic (D) and diabetic supplemented with 40 mg/day quercetin (DQ). After 120 days, the jejunum was collected and fixated in Zamboni’s solution for 18 h. After obtaining cryosections, immunohistochemistry was performed to label 5-HT and caspase-3. Quantification of 5-HT and caspase-3 immunoreactive (IR) cells in the lamina propria, villi and crypts were performed. RESULTS: The diabetic condition displayed an increase of the number of 5-HT-IR cells in villi and crypts, while decreased number of these cells was observed in lamina propria in the jejunum of STZ-rats. In the diabetic animals, an increased density of apoptotic cells in epithelial villi and crypts of the jejunum was observed, whereas a decreased number of caspase-3-IR cells was observed in lamina propria. Possibly, quercetin supplementation slightly suppressed the apoptosis phenomena in the epithelial villi and crypts of the STZ-rats, however the opposite effect was observed on the 5-HT-IR cells of the lamina propria. Quercetin supplementation on healthy animals promoted few changes of serotoninergic function and apoptotic stimuli. CONCLUSION: These results suggest that quercetin supplementation mostly improved the serotonergic function affected by diabetes maybe due to antioxidant and anti-inflammatory properties of quercetin.

Book ChapterDOI
01 Jan 2019
TL;DR: The role of EC cells as important sensory cells within the intestinal tract and how nutrient sources derived from diet and gut microbiota regulate gut 5-HT are discussed are discussed, and the newfound importance ofEC cells in human diseases associated with metabolic dysfunction is highlighted.
Abstract: Serotonin (5-hydroxytryptamine, 5-HT) is an important multifunctional bioamine, with roles in a range of physiological pathways. Almost all of the 5-HT in our body, and all of the circulating 5-HT, is synthesized and secreted by specialized enteroendocrine cells within the gastrointestinal (GI) mucosa, called enterochromaffin (EC) cells. EC cell–derived 5-HT has a wide array of actions within the gut, including modulating GI motility. Recent evidence demonstrates that peripheral 5-HT also plays a key role outside of the gut, affecting platelet clotting (see chapter by Schenwalder et al.), energy metabolism, and glucose homeostasis (see chapter by Xu et al.). Accordingly, factors that directly influence EC cell 5-HT synthesis and secretion, and alter peripheral 5-HT, have implications in a number of GI and metabolic disorders such as type 2 diabetes and obesity where energy homeostasis is significantly perturbed. This review discusses the role of EC cells as important sensory cells within the intestinal tract and how nutrient sources derived from diet and gut microbiota regulate gut 5-HT, and it highlights the newfound importance of EC cells in human diseases associated with metabolic dysfunction.