scispace - formally typeset
Search or ask a question

Showing papers on "Fading published in 2007"


Journal ArticleDOI
TL;DR: This letter addresses the problem of energy detection of an unknown signal over a multipath channel with the no-diversity case, and presents some alternative closed-form expressions for the probability of detection to those recently reported in the literature.
Abstract: This letter addresses the problem of energy detection of an unknown signal over a multipath channel. It starts with the no-diversity case, and presents some alternative closed-form expressions for the probability of detection to those recently reported in the literature. Detection capability is boosted by implementing both square-law combining and square-law selection diversity schemes

2,610 citations


Journal ArticleDOI
TL;DR: A statistical model for the optical intensity fluctuation at the receiver due to the combined effects of atmospheric turbulence and pointing errors is derived and the effect of beam width, detector size, and jitter variance explicitly is considered.
Abstract: We investigate the performance and design of free-space optical (FSO) communication links over slow fading channels from an information theory perspective. A statistical model for the optical intensity fluctuation at the receiver due to the combined effects of atmospheric turbulence and pointing errors is derived. Unlike earlier work, our model considers the effect of beam width, detector size, and jitter variance explicitly. Expressions for the outage probability are derived for a variety of atmospheric conditions. For given weather and misalignment conditions, the beam width is optimized to maximize the channel capacity subject to outage. Large gains in achievable rate are realized versus using a nominal beam width. In light fog, by optimizing the beam width, the achievable rate is increased by 80% over the nominal beam width at an outage probability of 10-5. Well-known error control codes are then applied to the channel and shown to realize much of the achievable gains.

1,205 citations


Journal ArticleDOI
TL;DR: This paper investigates the capacity gains offered by this dynamic spectrum sharing approach when channels vary due to fading and quantifies the relation between the secondary channel capacity and the interference inflicted on the primary user.
Abstract: Traditionally, the frequency spectrum is licensed to users by government agencies in a rigid manner where the licensee has the exclusive right to access the allocated band. Therefore, licensees are protected from any interference all the time. From a practical standpoint, however, an unlicensed (secondary) user may share a frequency band with its licensed (primary) owner as long as the interference it incurs is not deemed harmful by the licensee. In a fading environment, a secondary user may take advantage of this fact by opportunistically transmitting with high power when its signal, as received by the licensed receiver, is deeply faded. In this paper we investigate the capacity gains offered by this dynamic spectrum sharing approach when channels vary due to fading. In particular, we quantify the relation between the secondary channel capacity and the interference inflicted on the primary user. We further evaluate and compare the capacity under different fading distributions. Interestingly, our results indicate a significant gain in spectrum access in fading environments compared to the deterministic case

1,047 citations


Posted Content
TL;DR: In this paper, the secrecy capacity region of the parallel Gaussian broadcast channel with confidential messages (BCC) with independent sub-channels is investigated, and the optimal source power allocations that achieve the boundary of the secrecy region are derived.
Abstract: The fading broadcast channel with confidential messages (BCC) is investigated, where a source node has common information for two receivers (receivers 1 and 2), and has confidential information intended only for receiver 1. The confidential information needs to be kept as secret as possible from receiver 2. The broadcast channel from the source node to receivers 1 and 2 is corrupted by multiplicative fading gain coefficients in addition to additive Gaussian noise terms. The channel state information (CSI) is assumed to be known at both the transmitter and the receivers. The parallel BCC with independent subchannels is first studied, which serves as an information-theoretic model for the fading BCC. The secrecy capacity region of the parallel BCC is established. This result is then specialized to give the secrecy capacity region of the parallel BCC with degraded subchannels. The secrecy capacity region is then established for the parallel Gaussian BCC, and the optimal source power allocations that achieve the boundary of the secrecy capacity region are derived. In particular, the secrecy capacity region is established for the basic Gaussian BCC. The secrecy capacity results are then applied to study the fading BCC. Both the ergodic and outage performances are studied.

833 citations


Journal ArticleDOI
TL;DR: This paper investigates the bit error rate (BER) performance of FSO links with spatial diversity over log- normal atmospheric turbulence fading channels, assuming both independent and correlated channels among transmitter/receiver apertures.
Abstract: Free space optical (FSO) communications is a cost-effective and high bandwidth access technique, which has been receiving growing attention with recent commercialization successes. A major impairment in FSO links is the turbulence- induced fading which severely degrades the link performance. To mitigate turbulence-induced fading and, therefore, to improve the error rate performance, spatial diversity can be used over FSO links which involves the deployment of multiple laser transmitters/receivers. In this paper, we investigate the bit error rate (BER) performance of FSO links with spatial diversity over log- normal atmospheric turbulence fading channels, assuming both independent and correlated channels among transmitter/receiver apertures. Our analytical derivations build upon an approximation to the sum of correlated log-normal random variables. The derived BER expressions quantify the effect of spatial diversity and possible spatial correlations in a log-normal channel.

729 citations


Journal ArticleDOI
TL;DR: Narrow-band measurements of the mobile vehicle-to-vehicle propagation channel at 5.9 GHz are presented, under realistic suburban driving conditions in Pittsburgh, Pennsylvania, thereby enabling dynamic measurements of how large-scale path loss, Doppler spectrum, and coherence time depend on vehicle location and separation.
Abstract: This study presents narrow-band measurements of the mobile vehicle-to-vehicle propagation channel at 5.9 GHz, under realistic suburban driving conditions in Pittsburgh, Pennsylvania. Our system includes differential Global Positioning System (DGPS) receivers, thereby enabling dynamic measurements of how large-scale path loss, Doppler spectrum, and coherence time depend on vehicle location and separation. A Nakagami distribution is used for describing the fading statistics. The speed-separation diagram is introduced as a new tool for analyzing and understanding the vehicle-to-vehicle propagation environment. We show that this diagram can be used to model and predict channel Doppler spread and coherence time using vehicle speed and separation.

724 citations


Journal ArticleDOI
TL;DR: A fading model is introduced, which explores the nonlinearity of the propagation medium and derives the corresponding fading distribution-the alpha-mu distribution-which is in fact a rewritten form of the Stacy (generalized Gamma) distribution.
Abstract: This paper introduces a fading model, which explores the nonlinearity of the propagation medium. It derives the corresponding fading distribution-the alpha-mu distribution-which is in fact a rewritten form of the Stacy (generalized Gamma) distribution. This distribution includes several others such as Gamma (and its discrete versions Erlang and central Chi-squared), Nakagami-m (and its discrete version Chi), exponential, Weibull, one-sided Gaussian, and Rayleigh. Based on the fading model proposed here, higher order statistics are obtained in closed-form formulas. More specifically, level-crossing rate, average fade duration, and joint statistics (joint probability density function, general joint moments, and general correlation coefficient) of correlated alpha-mu variates are obtained, and they are directly related to the physical fading parameters

568 citations


Journal ArticleDOI
TL;DR: This correspondence presents performance analysis results for Random vector quantization limited feedback beamforming.
Abstract: In multiple antenna wireless systems, beamforming is a simple technique for guarding against the negative effects of fading. Unfortunately, beamforming requires the transmitter to have knowledge of the forward-link channel which is often not available a priori. One way of overcoming this problem is to design the beamforming vector using a limited number of feedback bits sent from the receiver to the transmitter. In limited feedback beamforming, the beamforming vector is restricted to lie in a codebook that is known to both the transmitter and receiver. Random vector quantization (RVQ) is a simple approach to codebook design that generates the vectors independently from a uniform distribution on the complex unit sphere. This correspondence presents performance analysis results for RVQ limited feedback beamforming

556 citations


Journal ArticleDOI
01 Nov 2007
TL;DR: This paper considers an aggregated channel model which takes into account both path-loss and turbulence-induced log-normal fading in free-space optical systems operating in atmospheric turbulence channels and derived closed form expressions for outage probability of the relaying schemes under consideration.
Abstract: In this paper, we present relay-assisted transmission as a powerful fading mitigation tool for free-space optical systems operating in atmospheric turbulence channels. We study both serial (i.e., multi-hop transmission) and parallel (i.e., cooperative diversity) relaying encoupled with amplify-and-forward and decode-and-forward modes. We consider an aggregated channel model which takes into account both path-loss and turbulence-induced log-normal fading. Since fading variance is distance-dependent in free-space optical systems, relay-assisted transmission takes advantage of the resulting shorter hops and yields significant performance improvements. We derive outage probability of the relaying schemes under consideration which are further confirmed through Monte-Carlo simulations. Our outage probability analysis demonstrates that an impressive performance improvement of 18.5 dB is possible with the use of a single relay at a target outage probability of 10-6.

549 citations


Journal ArticleDOI
TL;DR: It is shown through an example of a share-and-transmit scheme how the gains of transmitter cooperation may be entirely offset by the cost of enabling that cooperation so that the available DOF are not increased.
Abstract: In this correspondence, we show that the exact number of spatial degrees of freedom (DOF) for a two user nondegenerate (full rank channel matrices) multiple-input-multiple-output (MIMO) Gaussian interference channel with M1, M2 antennas at transmitters 1, 2 and N1, N2 antennas at the corresponding receivers, and perfect channel knowledge at all transmitters and receivers, is min{M1 + M2, N1 + M2, max(M1, N2), max(M2, N1)}. A constructive achievability proof shows that zero forcing is sufficient to achieve all the available DOF on the two user MIMO interference channel. We also show through an example of a share-and-transmit scheme how the gains of transmitter cooperation may be entirely offset by the cost of enabling that cooperation so that the available DOF are not increased.

532 citations


Proceedings ArticleDOI
24 Jun 2007
TL;DR: By separating all the secondary users into a few clusters and selecting the most favorable user in each cluster to report to the common receiver, the proposed method can exploit the user selection diversity so that the sensing performance can be enhanced.
Abstract: In cognitive radio systems, secondary users can be coordinated to perform cooperative spectrum sensing so as to detect the primary user more accurately. However, when the sensing observations are forwarded to a common receiver through fading channels, the sensing performance can be severely degraded. In this paper, we propose a cluster-based cooperative spectrum sensing method to improve the sensing performance. By separating all the secondary users into a few clusters and selecting the most favorable user in each cluster to report to the common receiver, the proposed method can exploit the user selection diversity so that the sensing performance can be enhanced. Furthermore, decision fusion and energy fusion are both studied and the analytical performance results are given. Numerical results show that the sensing performance is improved significantly as opposed to conventional spectrum sensing.

Journal ArticleDOI
Jia Tang1, Xi Zhang1
TL;DR: This work derives an optimal adaptation policy by integrating information theory with the concept of effective capacity for a block fading channel model and considers a more practical scenario where variable-power adaptive modulation is employed over both block fading and Markov correlated fading channels.
Abstract: We propose a quality-of-service (QoS) driven power and rate adaptation scheme over wireless links in mobile wireless networks. Specifically, our proposed scheme aims at maximizing the system throughput subject to a given delay QoS constraint. First, we derive an optimal adaptation policy by integrating information theory with the concept of effective capacity for a block fading channel model. Our analyses reveal an important fact that there exists a fundamental tradeoff between throughput and QoS provisioning. In particular, when the QoS constraint becomes loose, the optimal power-control policy converges to the well-known water-filling scheme, where Shannon (ergodic) capacity can be achieved. On the other hand, when the QoS constraint gets stringent, the optimal policy converges to the total channel inversion scheme under which the system operates at a constant rate. Inspired by the above observations, we then consider a more practical scenario where variable-power adaptive modulation is employed over both block fading and Markov correlated fading channels. In both cases, we derive the associated power and rate adaptation policies. The obtained results suggest that the channel correlation has a significant impact on QoS-driven power and rate adaptations. The higher the correlation is, the faster the power-control policy converges to the total channel inversion when the QoS constraint becomes more stringent. Finally, we conduct simulations to verify that the adaptation policy proposed for Markov channel models can also be applied to the more general channel models.

Journal ArticleDOI
TL;DR: This letter analyzes the performance of cooperative diversity wireless networks using amplify-and-forward relaying over independent, non-identical, Nakagami-m fading channels and shows that the derived error rate and outage probability are tight lower bounds particularly at medium and high SNR.
Abstract: This letter analyzes the performance of cooperative diversity wireless networks using amplify-and-forward relaying over independent, non-identical, Nakagami-m fading channels. The error rate and the outage probability are determined using the moment generating function (MGF) of the total signal-to-noise-ratio (SNR) at the destination. Since it is hard to find a closed form for the probability density function (PDF) of the total SNR, we use an approximate value instead. We first derive the PDF and the MGF of the approximate value of the total SNR. Then, the MGF is used to determine the error rate and the outage probability. We also use simulation to verify the analytical results. Results show that the derived error rate and outage probability are tight lower bounds particularly at medium and high SNR

Journal ArticleDOI
TL;DR: Investigations into channel characterization and antenna performance at 2.45 GHz show that for many channels, an antenna polarized normal to the body's surface gives the best path gain.
Abstract: On-body communication channels are of increasing interest for a number of applications, such as medical-sensor networks, emergency-service workers, and personal communications. This paper describes investigations into channel characterization and antenna performance at 2.45 GHz. It is shown that significant channel fading occurs during normal activity, due primarily to the dynamic nature of the human body, but also due to multipath around the body and from scattering by the environment. This fading can be mitigated by the use of antenna diversity, and gains of up to 10 dB are obtained. Separation of the antenna's performance from the channel characteristics is difficult, but results show that for many channels, an antenna polarized normal to the body's surface gives the best path gain. Simulation and modeling present many challenges, particularly in terms of the problem's scale, and the need for accurate modeling of the body and its movement.

Journal ArticleDOI
TL;DR: This paper demonstrates that under independent fading or shadowing, a low-overhead collaboration scheme with a very simple detector as its building block improves the spectrum utilization significantly and reduces the time and bandwidth resources required for satisfactory sensing which translates into higher agility and efficiency of the secondary access.
Abstract: Spectrum scarcity is becoming a major issue for service providers interested in either deploying new services or enhancing the capacity for existing applications. On the other hand, recent measurements suggest that many portions of the licensed (primary) spectrum remain unused for significant periods of time. This has led the regulatory bodies to consider opening up under-utilized licensed frequency bands for opportunistic access by unlicensed (secondary) users. Among different options, sensing-based access incurs a very low infrastructure cost and is backward compatible with the legacy primary systems. In this paper, we investigate the effect of user collaboration on the performance of sensing-based secondary access in fading channels. In particular, we demonstrate that under independent fading or shadowing, a low-overhead collaboration scheme with a very simple detector as its building block, 1) improves the spectrum utilization significantly, 2) enables the individual users to employ less sensitive detectors, thereby allowing a wider range of devices to access the primary bands, 3) increases the robustness toward noise uncertainty, 4) reduces the time and bandwidth resources required for satisfactory sensing which translates into higher agility and efficiency of the secondary access.

Proceedings ArticleDOI
24 Jun 2007
TL;DR: The positive impact of fading on the secrecy capacity is revealed and the critical role of rate adaptation, based on the main channel CSI, in facilitating secure communications over slow fading channels is established.
Abstract: We consider the secure transmission of information over an ergodic fading channel in the presence of an eavesdropper. Our eavesdropper can be viewed as the wireless counterpart of Wyner's wiretapper. The secrecy capacity of such a system is characterized under the assumption of asymptotically long coherence intervals. We analyze the full channel state information (CSI) case, where the transmitter has access to the channel gains of the legitimate receiver and eavesdropper, and the main channel CSI scenario, where only the legitimate receiver channel gain is known at the transmitter. In each scenario, the secrecy capacity is obtained along with the optimal power and rate allocation strategies. We then propose a low-complexity on/off power allocation strategy that achieves near-optimal performance with only the main channel CSI. More specifically, this scheme is shown to be asymptotically optimal as the average SNR goes to infinity, and interestingly, is shown to attain the secrecy capacity under the full CSI assumption. Remarkably, our results reveal the positive impact of fading on the secrecy capacity and establish the critical role of rate adaptation, based on the main channel CSI, in facilitating secure communications over slow fading channels.

Journal ArticleDOI
TL;DR: A scenario with two single-user links, one licensed to use the spectral resource (primary) and one unlicensed (secondary or cognitive), is considered and benefits of relaying strongly depend on the topology of the network.
Abstract: A scenario with two single-user links, one licensed to use the spectral resource (primary) and one unlicensed (secondary or cognitive), is considered. According to the cognitive radio principle, the activity of the secondary link is required not to interfere with the performance of the primary. Therefore, in this paper, it is assumed that the cognitive link accesses the channel only when sensed idle. Moreover, the analysis includes: (1) random packet arrivals; (2) sensing errors due to fading at the secondary link; (3) power allocation at the secondary transmitter based on long-term measurements. In this framework, the maximum stable throughput of the cognitive link (in packets/slot) is derived for a fixed throughput selected by the primary link. The model is modified so as to allow the secondary transmitter to act as a ldquotransparentrdquo relay for the primary link. In particular, packets that are not received correctly by the intended destination might be decoded successfully by the secondary transmitter. The latter can, then, queue and forward these packets to the intended receiver. A stable throughput of the secondary link with relaying is derived under the same conditions as before. Results show that benefits of relaying strongly depend on the topology (i.e., average channel powers) of the network.

Proceedings ArticleDOI
24 Jun 2007
TL;DR: It is shown that, the optimal communication strategy in all cases, is beamforming.
Abstract: A Gaussian MISO (multiple input single output) channel is considered where a transmitter is communicating to a receiver in the presence of an eavesdropper. The transmitter is equipped with multiple antennas, while the receiver and the eavesdropper each have a single antenna. The transmitter maximizes the communication rate, while concealing the message from the eavesdropper. The channel input is restricted to Gaussian signalling, with no preprocessing of information. For these channel inputs, and under different channel fading assumptions, optimal transmission strategies are found, in terms of the input covariance matrices. It is shown that, the optimal communication strategy in all cases, is beamforming.

Journal ArticleDOI
TL;DR: Tight approximations for both the post-processing SNR distribution and bit error rate for MIMO ZF receivers with M-QAM and M-PSK modulated signals are derived in closed-form by modeling the estimation error as independent complex Gaussian random variables.
Abstract: By employing spatial multiplexing, multiple-input multiple-output (MIMO) wireless antenna systems provide increases in capacity without the need for additional spectrum or power. Zero-forcing (ZF) detection is a simple and effective technique for retrieving multiple transmitted data streams at the receiver. However the detection requires knowledge of the channel state information (CSI) and in practice accurate CSI may not be available. In this letter, we investigate the effect of channel estimation error on the performance of MIMO ZF receivers in uncorrelated Rayleigh flat fading channels. By modeling the estimation error as independent complex Gaussian random variables, tight approximations for both the post-processing SNR distribution and bit error rate (BER) for MIMO ZF receivers with M-QAM and M-PSK modulated signals are derived in closed-form. Numerical results demonstrate the tightness of our analysis

Journal ArticleDOI
TL;DR: The proposed distribution turns out to be a very convenient tool for modelling cascaded Nakagami-m fading channels and analyzing the performance of digital communications systems operating over such channels.
Abstract: A generic and novel distribution, referred to as Nakagami, constructed as the product of N statistically independent, but not necessarily identically distributed, Nakagami-m random variables (RVs), is introduced and analyzed. The proposed distribution turns out to be a very convenient tool for modelling cascaded Nakagami-m fading channels and analyzing the performance of digital communications systems operating over such channels. The moments-generating, probability density, cumulative distribution, and moments functions of the N *Nakagami distribution are developed in closed form using the Meijer's G -function. Using these formulas, generic closed-form expressions for the outage probability, amount of fading, and average error probabilities for several binary and multilevel modulation signals of digital communication systems operating over the N *Nakagami fading and the additive white Gaussian noise channel are presented. Complementary numerical and computer simulation performance evaluation results verify the correctness of the proposed formulation. The suitability of the N *Nakagami fading distribution to approximate the lognormal distribution is also being investigated. Using Kolmogorov--Smirnov tests, the rate of convergence of the central limit theorem as pertaining to the multiplication of Nakagami-m RVs is quantified.

Journal ArticleDOI
TL;DR: It is shown that by turning off bad sensors, i.e., sensors with bad channels and bad observation quality, adaptive power gain can be achieved without sacrificing diversity gain, and some related energy efficiency issues in sensor networks are discussed.
Abstract: Distributed estimation based on measurements from multiple wireless sensors is investigated. It is assumed that a group of sensors observe the same quantity in independent additive observation noises with possibly different variances. The observations are transmitted using amplify-and-forward (analog) transmissions over nonideal fading wireless channels from the sensors to a fusion center, where they are combined to generate an estimate of the observed quantity. Assuming that the best linear unbiased estimator (BLUE) is used by the fusion center, the equal-power transmission strategy is first discussed, where the system performance is analyzed by introducing the concept of estimation outage and estimation diversity, and it is shown that there is an achievable diversity gain on the order of the number of sensors. The optimal power allocation strategies are then considered for two cases: minimum distortion under power constraints; and minimum power under distortion constraints. In the first case, it is shown that by turning off bad sensors, i.e., sensors with bad channels and bad observation quality, adaptive power gain can be achieved without sacrificing diversity gain. Here, the adaptive power gain is similar to the array gain achieved in multiple-input single-output (MISO) multiantenna systems when channel conditions are known to the transmitter. In the second case, the sum power is minimized under zero-outage estimation distortion constraint, and some related energy efficiency issues in sensor networks are discussed.

Journal ArticleDOI
TL;DR: A threshold-based transmission rule is developed where transmitters are active only if the channel to their receiver is acceptably strong, obtain expressions for the optimal threshold, and show that this simple, fully distributed scheme can significantly reduce the effect of fading.
Abstract: This paper addresses three issues in the field of ad hoc network capacity: the impact of (i) channel fading, (ii) channel inversion power control, and (iii) threshold-based scheduling on capacity. Channel inversion and threshold scheduling may be viewed as simple ways to exploit channel state information (CSI) without requiring cooperation across transmitters. We use the transmission capacity (TC) as our metric, defined as the maximum spatial intensity of successful simultaneous transmissions subject to a constraint on the outage probability (OP). By assuming the nodes are located on the infinite plane according to a Poisson process, we are able to employ tools from stochastic geometry to obtain asymptotically tight bounds on the distribution of the signal-to-interference (SIR) level, yielding in turn tight bounds on the OP (relative to a given SIR threshold) and the TC. We demonstrate that in the absence of CSI, fading can significantly reduce the TC and somewhat surprisingly, channel inversion only makes matters worse. We develop a threshold-based transmission rule where transmitters are active only if the channel to their receiver is acceptably strong, obtain expressions for the optimal threshold, and show that this simple, fully distributed scheme can significantly reduce the effect of fading.

Journal ArticleDOI
TL;DR: The packet error rate (PER) for each model, measured with an emulator and an 802.11p wireless access in vehicular environments (WAVE) prototype, is presented.
Abstract: Three vehicle-to-vehicle (V2V) models and three roadside-to-vehicle (RTV) models, each suitable for RF channel emulation and based on measurements at 5.9 GHz, are presented. Each model captures the joint Doppler-delay characteristics of a different environment. The packet error rate (PER) for each model, measured with an emulator and an 802.11p wireless access in vehicular environments (WAVE) prototype, is presented.

Journal ArticleDOI
TL;DR: It is shown that for a system with M transmit antennas and users equipped with N antennas, the sum rate scales like MloglognN for DPC, and beamforming when M is fixed and for any N (either growing to infinity or not).
Abstract: In this letter, we derive the scaling laws of the sum rate for fading multiple-input multiple-output Gaussian broadcast channels using time sharing to the strongest user, dirty-paper coding (DPC), and beamforming, when the number of users (receivers) n is large. Throughout the letter, we assume a fix average transmit power and consider a block-fading Rayleigh channel. First, we show that for a system with M transmit antennas and users equipped with N antennas, the sum rate scales like MloglognN for DPC, and beamforming when M is fixed and for any N (either growing to infinity or not). On the other hand, when both M and N are fixed, the sum rate of time sharing to the strongest user scales like min(M,N)loglogn. Therefore, the asymptotic gain of DPC over time sharing for the sum rate is (M/min(M,N)) when M and N are fixed. It is also shown that if M grows as logn, the sum rate of DPC and beamforming will grow linearly in M, but with different constant multiplicative factors. In this region, the sum-rate capacity of time -sharing scales like Nloglogn

Posted Content
TL;DR: In this paper, the authors consider the impact of channel fading, channel inversion power control, and threshold-based scheduling on ad hoc network capacity, and show that in the absence of CSI, fading can significantly reduce the transmission capacity.
Abstract: This paper addresses three issues in the field of ad hoc network capacity: the impact of i)channel fading, ii) channel inversion power control, and iii) threshold-based scheduling on capacity. Channel inversion and threshold scheduling may be viewed as simple ways to exploit channel state information (CSI) without requiring cooperation across transmitters. We use the transmission capacity (TC) as our metric, defined as the maximum spatial intensity of successful simultaneous transmissions subject to a constraint on the outage probability (OP). By assuming the nodes are located on the infinite plane according to a Poisson process, we are able to employ tools from stochastic geometry to obtain asymptotically tight bounds on the distribution of the signal-to-interference (SIR) level, yielding in turn tight bounds on the OP (relative to a given SIR threshold) and the TC. We demonstrate that in the absence of CSI, fading can significantly reduce the TC and somewhat surprisingly, channel inversion only makes matters worse. We develop a threshold-based transmission rule where transmitters are active only if the channel to their receiver is acceptably strong, obtain expressions for the optimal threshold, and show that this simple, fully distributed scheme can significantly reduce the effect of fading.

Journal ArticleDOI
TL;DR: Joint multicell processing is shown to eliminate out-of-cell interference, which is traditionally considered to be a limiting factor in high-rate reliable communications.
Abstract: The sum-rate capacity of a cellular system model is analyzed, considering the uplink and downlink channels, while addressing both nonfading and flat-fading channels. The focus is on a simple Wyner-like multicell model, where the system cells are arranged on a circle, and the cell sites are located at the boundaries of the cells. For the uplink channel, analytical expressions of the sum-rate capacities are derived for intra-cell time-division multiple-access (TDMA) scheduling, and a "wideband" (WB) scheme (where all users are active simultaneously utilizing all bandwidths for coding). Assuming individual equal per-cell power constraints, and using the Lagrangian uplink-downlink duality principle, an analytical expression for the sum-rate capacity of the downlink channel is derived for nonfading channels, and shown to coincide with the corresponding uplink result. Introducing flat-fading, lower and upper bounds on the average per-cell ergodic sum-rate capacity are derived. The bounds exhibit an O(loge K) multiuser diversity factor for a number of users per cell K Gt 1, in addition to the array diversity gain. Joint multicell processing is shown to eliminate out-of-cell interference, which is traditionally considered to be a limiting factor in high-rate reliable communications.

Journal ArticleDOI
TL;DR: This work extends the nonorthogonal amplify-and-forward (NAF) cooperative diversity scheme to the multiple-input multiple-output (MIMO) channel and proves that the Golden code and the 4times4 Perfect code are optimal for the single-antenna and two-Antenna cases, respectively.
Abstract: In this work, we extend the nonorthogonal amplify-and-forward (NAF) cooperative diversity scheme to the multiple-input multiple-output (MIMO) channel. A family of space-time block codes for a half-duplex MIMO NAF fading cooperative channel with N relays is constructed. The code construction is based on the nonvanishing determinant (NVD) criterion and is shown to achieve the optimal diversity-multiplexing tradeoff (DMT) of the channel. We provide a general explicit algebraic construction, followed by some examples. In particular, in the single-relay case, it is proved that the Golden code and the 4times4 Perfect code are optimal for the single-antenna and two-antenna cases, respectively. Simulation results reveal that a significant gain (up to 10 dB) can be obtained with the proposed codes, especially in the single-antenna case

Journal ArticleDOI
TL;DR: This paper proposes a universal codebook design for correlated channels when channel statistical information is known at the transmitter that is robust to channel statistics and is implemented by maps that can rotate and scale spherical caps on the Grassmannian manifold.
Abstract: The full diversity gain provided by a multi-antenna channel can be achieved by transmit beamforming and receive combining. This requires the knowledge of channel state information (CSI) at the transmitter which is difficult to obtain in practice. Quantized beamforming where fixed codebooks known at both the transmitter and the receiver are used to quantize the CSI has been proposed to solve this problem. Most recent works focus attention on limited feedback codebook design for the uncorrelated Rayleigh fading channel. Such designs are sub-optimal when used in correlated channels. In this paper, we propose systematic codebook design for correlated channels when channel statistical information is known at the transmitter. This design is motivated by studying the performance of pure statistical beamforming in correlated channels and is implemented by maps that can rotate and scale spherical caps on the Grassmannian manifold. Based on this study, we show that even statistical beamforming is near-optimal if the transmitter covariance matrix is ill-conditioned and receiver covariance matrix is well-conditioned. This leads to a partitioning of the transmit and receive covariance spaces based on their conditioning with variable feedback requirements to achieve an operational performance level in the different partitions. When channel statistics are difficult to obtain at the transmitter, we propose a universal codebook design (also implemented by the rotation-scaling maps) that is robust to channel statistics. Numerical studies show that even few bits of feedback, when applied with our designs, lead to near perfect CSI performance in a variety of correlated channel conditions.

Journal ArticleDOI
TL;DR: The results show that even with some deviation from the optimal design, the LOS MEMO case outperforms the i.i.d. Rayleigh case in terms of MI.
Abstract: This paper describes a technique for realizing a high-rank channel matrix in a line-of-sight (LOS) multiple-input multiple-output (MIMO) transmission scenario. This is beneficial for systems which are unable to make use of the originally derived MIMO gain given by independent and identically distributed (i.i.d.) flat Rayleigh fading subchannels. The technique is based on optimization of antenna placement in uniform linear arrays with respect to mutual information (MI). By introducing a new and more general 3-D geometrical model than that applied in earlier work, additional insight into the optimal design parameters is gained. We also perform a novel analysis of the sensitivity of the optimal design parameters, and derive analytical expressions for the eigenvalues of the pure LOS channel matrix which are valid also when allowing for non-optimal design. Furthermore, we investigate the approximations introduced in the derivations, in order to reveal when the results are applicable. The LOS matrix is employed in a Ricean fading channel model, and performance is evaluated with respect to the average MI and the MI cumulative distribution function. Our results show that even with some deviation from the optimal design, the LOS MEMO case outperforms the i.i.d. Rayleigh case in terms of MI.

Journal ArticleDOI
06 Dec 2007
TL;DR: In this article, the authors present a review of recent advances in the area of fading channel prediction and demonstrate that reliable fading prediction makes adaptive transmission feasible in diverse wireless communication systems, and they use these criteria in the review and analysis of adaptive transmission aided by fading prediction algorithms.
Abstract: Adaptive transmission methods can potentially aid the achievement of high data rates required for mobile radio multimedia services. To realize this potential, the transmitter needs accurate channel state information (CSI) for the upcoming transmission frame. In most mobile radio systems, the CSI is estimated at the receiver and fed back to the transmitter. However, unless the mobile speed is very low, the estimated CSI cannot be used directly to select the parameters of adaptive transmission systems, since it quickly becomes outdated due to the rapid channel variation caused by multipath fading. To enable adaptive transmission for mobile radio systems, prediction of future fading channel samples is required. Several fundamental issues arise in the design and testing of fading prediction algorithms for adaptive transmission systems. These include complexity, robustness, choice of an appropriate channel model for algorithm validation, channel estimation and noise reduction required for reliable prediction, and design and analysis of adaptive transmission methods aided by fading prediction algorithms. We use these criteria in the review of recent advances in the area of fading channel prediction. We also demonstrate that reliable fading prediction makes adaptive transmission feasible in diverse wireless communication systems.