scispace - formally typeset
Search or ask a question

Showing papers on "Methanogenesis published in 2007"


Journal ArticleDOI
TL;DR: It is shown that thermodynamic and kinetic constraints largely prevent large-scale methanogenesis in the open ocean water column, and the role of anaerobic oxidation of methane has changed from a controversial curiosity to a major sink in anoxic basins and sediments.
Abstract: This review shows that thermodynamic and kinetic constraints largely prevent large-scale methanogenesis in the open ocean water column. One example of open-ocean methanogenesis involves anoxic digestive tracts and fecal pellet microenvironments; methane released during fecal pellet disaggregation results in the mixed-layer methane maximum. However, the bulk of the methane in the ocean is added by coastal runoff, seeps, hydrothermal vents, decomposing hydrates, and mud volcanoes. Since methane is present in the open ocean at nanomolar concentrations, and since the flux to the atmosphere is small, the ultimate fate of ocean methane additions must be oxidation within the ocean. As indicated in the Introduction and highlighted in Table 3, sources of methane to the ocean water column are poorly quantified. There are only a small number of direct water column methane oxidation rates, so sinks are also poorly quantified. We know that methane oxidation rates are sensitive to ambient methane concentrations, but we have no information on reaction kinetics and only one report of the effect of pressure on methane oxidation. Our perspective on methane sources and the extent of methane oxidation has been changed dramatically by new techniques involving gene probes, determination of isotopically depleted biomarkers, and recent 14C-CH4 measurements showing that methane geochemistry in anoxic basins is dominated by seeps providing fossil methane. The role of anaerobic oxidation of methane has changed from a controversial curiosity to a major sink in anoxic basins and sediments. © 2007 American Chemical Society.

1,194 citations


Journal ArticleDOI
TL;DR: Because plant extracts may act at different levels in the carbohydrate and protein degradation pathways, their careful selection and combination may provide a useful tool to manipulate rumen microbial fermentation effectively.

770 citations


Journal ArticleDOI
TL;DR: A recent review as discussed by the authors showed that thermodynamic and kinetic constraints largely prevent large-scale methanogenesis in the open ocean water column, and that the bulk of the methane in the ocean is added by coastal runoff, seeps, hydrothermal vents, decomposing hydrates, and mud volcanoes.
Abstract: This review shows that thermodynamic and kinetic constraints largely prevent large-scale methanogenesis in the open ocean water column. One example of open-ocean methanogenesis involves anoxic digestive tracts and fecal pellet microenvironments; methane released during fecal pellet disaggregation results in the mixed-layer methane maximum. However, the bulk of the methane in the ocean is added by coastal runoff, seeps, hydrothermal vents, decomposing hydrates, and mud volcanoes. Since methane is present in the open ocean at nanomolar concentrations, and since the flux to the atmosphere is small, the ultimate fate of ocean methane additions must be oxidation within the ocean. As indicated in the Introduction and highlighted in Table 3, sources of methane to the ocean water column are poorly quantified. There are only a small number of direct water column methane oxidation rates, so sinks are also poorly quantified. We know that methane oxidation rates are sensitive to ambient methane concentrations, but we have no information on reaction kinetics and only one report of the effect of pressure on methane oxidation. Our perspective on methane sources and the extent of methane oxidation has been changed dramatically by new techniques involving gene probes, determination of isotopically depleted biomarkers, and recent 14C-CH4 measurements showing that methane geochemistry in anoxic basins is dominated by seeps providing fossil methane. The role of anaerobic oxidation of methane has changed from a controversial curiosity to a major sink in anoxic basins and sediments. © 2007 American Chemical Society.

330 citations


Journal ArticleDOI
TL;DR: It is hypothesize that terminal carbon mineralization in surface sediments of the Black Sea is largely due to the sulfate reduction activity of previously hidden SRM, and similar, novel deeply branching sequences which might represent Gram-positive spore-forming sulfate- and/or sulfite-reducing microorganisms are dominated.
Abstract: The Black Sea, with its highly sulfidic water column, is the largest anoxic basin in the world. Within its sediments, the mineralization of organic matter occurs essentially through sulfate reduction and methanogenesis. In this study, the sulfate-reducing community was investigated in order to understand how these microorganisms are distributed relative to the chemical zonation: in the upper sulfate zone, at the sulfate-methane transition zone, and deeply within the methane zone. Total bacteria were quantified by real-time PCR of 16S rRNA genes whereas sulfate-reducing microorganisms (SRM) were quantified by targeting their metabolic key gene, the dissimilatory (bi)sulfite reductase (dsrA). Sulfate-reducing microorganisms were predominant in the sulfate zone but occurred also in the methane zone, relative proportion was maximal around the sulfate-methane transition, c. 30%, and equally high in the sulfate and methane zones, 5-10%. The dsrAB clone library from the sulfate-methane transition zone, showed mostly sequences affiliated with the Desulfobacteraceae. While, the dsrAB clone libraries from the upper, sulfate-rich zone and the deep, sulfate-poor zone were dominated by similar, novel deeply branching sequences which might represent Gram-positive spore-forming sulfate- and/or sulfite-reducing microorganisms. We thus hypothesize that terminal carbon mineralization in surface sediments of the Black Sea is largely due to the sulfate reduction activity of previously hidden SRM. Although these novel SRM were also abundant in sulfate-poor, methanogenic areas of the Black Sea sediment, their activities and possibly very versatile metabolic capabilities remain subject of further study.

239 citations


Journal ArticleDOI
TL;DR: This is the first report on fermentative production of hydrogen and methane from organic waste at an actual level and it is speculated that the operation at high temperature and the inoculation of thermophiles enabled the selective growth of the introduced microorganisms and gave hydrogen fermentation efficiencies comparable to laboratory experiments.
Abstract: A pilot-scale experimental plant for the production of hydrogen and methane by a two-stage fermentation process was constructed and operated using a mixture of pulverized garbage and shredded paper wastes. Thermophilic hydrogen fermentation was established at 60 degrees C in the first bioreactor by inoculating with seed microflora. Following the hydrogenogenic process, methanogenesis in the second bioreactor was conducted at 55 degrees C using an internal recirculation packed-bed reactor (IRPR). After conducting steady-state operations under a few selected conditions, the overall hydraulic retention time was optimized at 8 d (hydrogenogenesis, 1.2 d; methanogenesis, 6.8 d), producing 5.4 m3/m3/d of hydrogen and 6.1 m3/m3/d of methane with chemical oxygen demand and volatile suspended solid removal efficiencies of 79.3% and 87.8%, respectively. Maximum hydrogen production yield was calculated to be 2.4 mol/mol hexose and 56 L/kg COD loaded. The methanogenic performance of the IRPR was stable, although the organic loading rate and the composition of the effluent from the hydrogenogenic process fluctuated substantially. A clone library analysis of the microflora in the hydrogenogenic reactor indicated that hydrogen-producing Thermoanaerobacterium-related organisms in the inoculum were active in the hydrogen fermentation of garbage and paper wastes, although no aseptic operations were applied. We speculate that the operation at high temperature and the inoculation of thermophiles enabled the selective growth of the introduced microorganisms and gave hydrogen fermentation efficiencies comparable to laboratory experiments. This is the first report on fermentative production of hydrogen and methane from organic waste at an actual level.

212 citations


Journal ArticleDOI
TL;DR: In this article, a community of anode-respiring bacteria oxidizing a mixture of the most common fermentation products: acetate, butyrate, propionate, ethanol, and hydrogen.
Abstract: We determined the kinetic response of a community of anode-respiring bacteria oxidizing a mixture of the most common fermentation products: acetate, butyrate, propionate, ethanol, and hydrogen. We acclimated the community by performing three consecutive batch experiments in a microbial electrolytic cell (MEC) containing a mixture of the fermentation products. During the consecutive-batch experiments, the coulombic efficiency and start-up period improved with each step. We used the acclimated biofilm to start continuous experiments in an MEC, in which we controlled the anode potential using a potentiostat. During the continuous experiments, we tested each individual substrate at a range of anode potentials and substrate concentrations. Our results show low current densities for butyrate and hydrogen, but high current densities for propionate, acetate, and ethanol (maximum values are 1.6, 9.0, and 8.2 A/m2, respectively). Acetate showed a high coulombic efficiency (86%) compared to ethanol and propionate (49 and 41%, respectively). High methane concentrations inside the MEC during ethanol experiments suggest that methanogenesis is one reason why the coulombic efficiency was lower than that of acetate. Our results provide kinetic parameters, such as the anode overpotential, the maximum current density, and the Monod half-saturation constant, that are needed for model development when using a mixture of fermentation products. When we provided no electron donor, we measured current due to endogenous decay of biomass (~0.07 A/m2) and an open-cell potential (−0.54 V vs Ag/AgCl) associated with biomass components active in endogenous respiration.

200 citations


Journal ArticleDOI
TL;DR: Methane production and archaeal community composition were studied in samples from an acidic peat bog incubated at different temperatures and pH values, and H2-dependent methanogenesis increased strongly at the lowest pH, 3.8, and Methanobacteriaceae became important except for Methanomicrobiaceae and Methanosarcinaceae.
Abstract: Methane production and archaeal community composition were studied in samples from an acidic peat bog incubated at different temperatures and pH values. H(2)-dependent methanogenesis increased strongly at the lowest pH, 3.8, and Methanobacteriaceae became important except for Methanomicrobiaceae and Methanosarcinaceae. An acidophilic and psychrotolerant Methanobacterium sp. was isolated using H(2)-plus-CO(2)-supplemented medium at pH 4.5.

195 citations


Journal ArticleDOI
TL;DR: A quantitative PCR approach was applied using primers targeting the domains of Bacteria and Archaea, and key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA) were targeted, suggesting sulfate-dependent anaerobic oxidation of methane.

194 citations


Journal ArticleDOI
TL;DR: In this paper, an innovative treatment method to directly convert methanogenic granules to hydrogen producing granules using chloroform was reported, which showed desirable selectivity on inhibition of methanogens from hydrogen producing bacteria, nearly permanently eliminated the methane production, postponed the hydrogen consumption to acetic acid, while allowed recovery for normal hydrogen production.

191 citations


Journal ArticleDOI
TL;DR: The spatial patterns of CH4 and CO2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis.
Abstract: The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH4 and CO2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO2 reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average δ13C carbon isotopic signature of −67.1‰, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (−66.4‰ ± 3.9 ‰ [mean ± standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (−72.9‰ ± 2.2 ‰; n = 7). Incorporation of 14C from radiolabeled CH4 or CO2 revealed one hot spot for methanotrophy and CO2 fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with 14CH4 or 14CO2 revealed that there was interconversion of CH4 and CO2. The level of CO2 reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis.

190 citations


Journal ArticleDOI
TL;DR: LIBSHUFF analysis revealed that N2 gas injected into the coal seam (for enhanced methane production) does not affect the coverage of archaeal and bacterial populations, but amova analysis does provide evidence for a change in the genetic diversity of Archaeal populations that are dominated by methanogens.
Abstract: We investigated microbial methanogenesis and community structure based on 16S rRNA gene sequences from a coal seam aquifer located 843–907 m below ground level in northern Japan; additionally, we studied the δ13C and δ2H (δD) of coal-bed gases and other physicochemical parameters. Although isotopic analysis suggested a thermocatalytic origin for the gases, the microbial activity and community structure strongly implied the existence of methanogenic microbial communities in situ. Methane was generated in the enrichment cultures of the hydrogenotrophic and methylotrophic microorganisms obtained from coal seam groundwater. Methanogen clones dominated the archaeal 16S rRNA gene libraries and were mostly related to the hydrogenotrophic genus Methanoculleus and the methylotrophic genus Methanolobus. Bacterial 16S rRNA gene libraries were dominated by the clones related to the genera Acetobacterium and Syntrophus which have a symbiotic association with methanogens. LIBSHUFF analysis revealed that N2 gas injected into the coal seam (for enhanced methane production) does not affect the coverage of archaeal and bacterial populations. However, amova analysis does provide evidence for a change in the genetic diversity of archaeal populations that are dominated by methanogens. Therefore, N2 injection into the coal seam might affect the cycling of matter by methanogens in situ.

Journal ArticleDOI
TL;DR: The comparative experimental results show that the heat-treatment method was better than the two others for enriching H 2 -producing inoculums from mixed anaerobic cultures.

Journal ArticleDOI
TL;DR: In this article, the authors measured aceticlastic and autotrophic methanogenesis, sulfate reduction, denitrification, and iron reduction in a bog, an intermediate fen, and a rich fen in the Upper Peninsula of Michigan for one growing season.
Abstract: Peatland soils represent globally significant stores of carbon, and understanding carbon cycling pathways in these ecosystems has important implications for global climate change. We measured aceticlastic and autotrophic methanogenesis, sulfate reduction, denitrification, and iron reduction in a bog, an intermediate fen, and a rich fen in the Upper Peninsula of Michigan for one growing season. In 3-d anaerobic incubations of slurried peat, denitrification and iron reduction were minor components of anaerobic carbon mineralization. Experiments using 14C-labeled methanogenic substrates showed that methanogenesis in these peatlands was primarily through the aceticlastic pathway, except early in the growing season in more ombrotrophic peatlands, where the autotrophic pathway was dominant or codominant. Overall, methane production was responsible for 3-70% of anaerobic carbon mineralization. Sulfate reduction accounted for 0-26% of anaerobic carbon mineralization, suggesting a rapid turnover of a very small sulfate pool. A large percentage of anaerobic carbon mineralization (from 29% to 85%) was unexplained by any measured process, which could have resulted from fermentation or possibly from the use of organic molecules (e.g., humic acids) as alternative electron acceptors.

Journal ArticleDOI
TL;DR: Leachate percolation during methane phase showed an enhanced methanization when compared to the reactors without leachatepercolation, and this needed further investigation.

Journal ArticleDOI
TL;DR: This biogeochemical, molecular genetic and lipid biomarker study of sediments from the Skagerrak investigated methane cycling in a sediment with a clear sulfate-methane-transition zone (SMTZ) and where CH(4) supply was by diffusion, rather than by advection, as in more commonly studied seep sites.
Abstract: Summary This biogeochemical, molecular genetic and lipid biomarker study of sediments (~4 m cores) from the Skagerrak (Denmark) investigated methane cycling in a sediment with a clear sulfate-methane-transition zone (SMTZ) and where CH4 supply was by diffusion, rather than by advection, as in more commonly studied seep sites. Sulfate reduction removed sulfate by 0.7 m and CH4 accumulated below. 14 C-radiotracer measurements demonstrated active H2/CO2 and acetate methanogenesis and anaerobic oxidation of CH4 (AOM). Maximum AOM rates occurred near the SMTZ (~ 3n mol cm -3 day -1 at 0.75 m) but also continued deeper, overall, at much lower rates. Maximum rates of H2/CO2 and acetate methanogenesis occurred below the SMTZ but H2/CO2 methanogenesis rates were ¥ 10 those of acetate methanogenesis, and this was consistent with initial values of 13 C-depleted CH4

Book ChapterDOI
01 Jan 2007
TL;DR: The biological transformation, by which organic matter is degraded to methane and carbon dioxide is commonly called “methanogenesis”, and the main product of methanogenesis, a mixture of carbon dioxide and methane, is called ”biogas”.
Abstract: The biological transformation, by which organic matter is degraded to methane and carbon dioxide is commonly called “methanogenesis”. The main product of methanogenesis, a mixture of carbon dioxide and methane, is called “biogas”. The term “biogas” was registered as trade name (Institute of Gas Technology, Chicago, United States), but nevertheless, is commonly used by the public. The technical application of “methanogenesis” in a bio-reactor (or digester) is designated as “biomethanation”. The term “anaerobic digestion” is widely used synonymously, although it may lead to confusion with other anaerobic digestion processes that do not stringently involve generation of methane.

Journal ArticleDOI
TL;DR: The effects of temperature on rates and pathways of CH4 production and on the relative abundance and structure of the archaeal community in a mildly acidic peat from a permafrost region in Siberia is studied.
Abstract: Few studies have dealt so far with methanogenic pathways and populations in subarctic and arctic soils We studied the effects of temperature on rates and pathways of CH4 production and on the relative abundance and structure of the archaeal community in a mildly acidic peat from a permafrost region in Siberia (67 degrees N) We monitored the production of CH4 and CO2 over time and measured the consumption of Fe(II), ethanol and volatile fatty acids All experiments were performed with and without specific inhibitors [2-bromoethanesulfonate (BES) for methanogenesis and CH3F for acetoclastic methanogenesis] The optimum temperature for methanogenesis was between 26 degrees C and 28 degrees C [43 micromol CH4 (g dry weight)(-1) day(-1)], but the activity was high even at 4 degrees C [075 micromol CH4 (g dry weight)(-1) day(-1)], constituting 17% of that at 27 degrees C The population structure of archaea was studied by terminal restriction fragment length polymorphism analysis and remained constant over a wide temperature range Acetoclastic methanogenesis accounted for about 70% of the total methanogenesis Most 16S rRNA gene sequences clustered with Methanosarcinales, correlating with the prevalence of acetoclastic methanogenesis In addition, sequences clustering with Methanobacteriales were recovered Fe reduction occurred in parallel to methanogenesis At lower and higher temperatures Fe reduction was not affected by BES Because butyrate was consumed during methanogenesis and accumulated when methanogenesis was inhibited (BES and CH3F), it is proposed to serve as methanogenic precursor, providing acetate and H2 by syntrophic oxidation In addition, ethanol and caproate occurred as intermediates Because of thermodynamic constraints, homoacetogenesis could not compete with hydrogenotrophic methanogenesis

Journal ArticleDOI
TL;DR: This study shows that the reaction of butyrate degradation to acetate and hydrogen could happen when gas sparging was applied, and found that the microorganisms responsible for homoacetogenesis were likely present in normal anaerobic environments, such as biogas reactors.

Journal ArticleDOI
TL;DR: In this paper, electron transfer processes of dissolved organic matter (DOM) and their potential importance for anaerobic heterotrophic respiration in a northern peatland were investigated using dissolved H2S and ferric iron as reactants.
Abstract: We investigated electron transfer processes of dissolved organic matter (DOM) and their potential importance for anaerobic heterotrophic respiration in a northern peatland Electron accepting and donating capacities (EAC, EDC) of DOM were quantified using dissolved H2S and ferric iron as reactants Carbon turnover rates were obtained from porewater profiles (CO2 ,C H4) and inverse modeling Carbon dioxide was released at rates of 02‐59mmolm � 2 day � 1 below the water table Methane (CH4) formation contributed o10%, and oxygen consumption 2% to 40%, leaving a major fraction of CO2 production unexplained DOM oxidized H2S to thiosulfate and was reduced by dissolved ferric iron Reduction with H2S increased the subsequently determined EDC compared to untreated controls, indicating a reversibility of the electron transfer In situ redox capacities of DOM ranged from 02 to 61mEqg � 1 C (EAC) and from 00 to 14mEqg � 1 C (EDC), respectively EAC generally decreased with depth and changed after a water table drawdown and rebound by 20 and � 45mEqm � 2 , respectively The change in EAC during the water table fluctuation was similar to CH4 formation rates In peatlands, electron transfer of DOM may thus significantly contribute to the oxidation of reduced organic substrates by anaerobic heterotrophic respiration, or by maintaining the respiratory activity of sulfate reducers via provision of thiosulfate Part of the anaerobic electron flow in peat soils is thus potentially diverted from methanogenesis, decreasing its contribution to the total carbon emitted to the atmosphere

Journal ArticleDOI
TL;DR: In this paper, a permafrost core of Holocene age was used to study the methane concentration, the quantity and quality of organic matter, and the activity and biomass of the methanogenic community.
Abstract: Permafrost environments within the Siberian Arctic are natural sources of the climate relevant trace gas methane. In order to improve our understanding of the present and future carbon dynamics in high latitudes, we studied the methane concentration, the quantity and quality of organic matter, and the activity and biomass of the methanogenic community in permafrost deposits. For these investigations a permafrost core of Holocene age was drilled in the Lena Delta (72°22′N, 126°28′E). The organic carbon of the permafrost sediments varied between 0.6% and 4.9% and was characterized by an increasing humification index with permafrost depth. A high CH4 concentration was found in the upper 4 m of the deposits, which correlates well with the methanogenic activity and archaeal biomass (expressed as PLEL concentration). Even the incubation of core material at −3 and −6°C with and without substrates showed a significant CH4 production (range: 0.04–0.78 nmol CH4 h−1 g−1). The results indicated that the methane in Holocene permafrost deposits of the Lena Delta originated from modern methanogenesis by cold-adapted methanogenic archaea. Microbial generated methane in permafrost sediments is so far an underestimated factor for the future climate development.

Journal ArticleDOI
TL;DR: Incubations of seep sediments demonstrate, as would be expected from this model, that methanethiol inhibits AOM and that CO can be substituted for CH(4) as the electron donor for methylogenesis.
Abstract: While it is clear that microbial consortia containing Archaea and sulfate-reducing bacteria (SRB) can mediate the anaerobic oxidation of methane (AOM), the interplay between these microorganisms remains unknown. The leading explanation of the AOM metabolism is ‘reverse methanogenesis’ by which a methanogenesis substrate is produced and transferred between species. Conceptually, the reversal of methanogenesis requires low H_2 concentrations for energetic favourability. We used ^(13)C-labelled CH_4 as a tracer to test the effects of elevated H_2 pressures on incubations of active AOM sediments from both the Eel River basin and Hydrate Ridge. In the presence of H_2, we observed a minimal reduction in the rate of CH_4 oxidation, and conclude H_2 does not play an interspecies role in AOM. Based on these results, as well as previous work, we propose a new model for substrate transfer in AOM. In this model, methyl sulfides produced by the Archaea from both CH_4 oxidation and CO_2 reduction are transferred to the SRB. Metabolically, CH_4 oxidation provides electrons for the energy-yielding reduction of CO_2 to a methyl group (‘methylogenesis’). Methylogenesis is a dominantly reductive pathway utilizing most methanogenesis enzymes in their forward direction. Incubations of seep sediments demonstrate, as would be expected from this model, that methanethiol inhibits AOM and that CO can be substituted for CH_4 as the electron donor for methylogenesis.

Journal ArticleDOI
TL;DR: In this article, the carbon isotopic composition of pore fluids from Leg 175 of the Ocean Drilling Program (ODP) along the West African Margin was used to quantify rates of methane production (methanogenesis) and destruction via oxidation (mETHanotrophy) in deep-sea sediments.
Abstract: We use the carbon isotopic composition ( δ 13 C) of the dissolved inorganic carbon (DIC) of pore fluids from Leg 175 of the Ocean Drilling Program (ODP) along the West African Margin to quantify rates of methane production (methanogenesis) and destruction via oxidation (methanotrophy) in deep-sea sediments. Results from a model of diffusion and reaction in the sedimentary column show that anaerobic methane oxidation (AOM) occurs in the transition zone between the presence of sulfate and methane, and methanogenesis occurs below these depths in a narrow confined zone that ends at about 250 m below the sea-sediments surface in all sediment profiles. Our model suggests that the rates of methanogenesis and AOM range between 6 · 10 − 8 and 1 · 10 − 10 mol cm − 3 year − 1 at all sites, with higher rates at sites where sulfate is depleted in shallower depths. Our AOM rates agree with those based solely on sulfate concentration profiles, but are much lower than those calculated from experiments of sulfate reduction through AOM done under laboratory conditions. At sites where the total organic carbon (TOC) is less than 5% of the total sediment, we calculate that AOM is the main pathway for sulfate reduction. We calculate that higher rates of AOM are associated with increased recrystallization rates of carbonate minerals. We do not find a correlation between methanogenesis rates and the content of carbonate or TOC in the sediments, porosity, sedimentation rate, or the C:N ratio, and the cause of lack of methanogenesis below a certain depth is not clear. There does, however, appear to be an association between the rates of methanogenesis and the location of the site in the upwelling system, suggesting that some variable such as the type of the organic matter or the nature of the microbiological community may be important.

Book ChapterDOI
TL;DR: This review will summarize the current knowledge of energy conservation of methanogens and focus on recent insights into structure and function of ion translocating enzymes found in these organisms.
Abstract: Methane-forming archaea are strictly anaerobic, ancient microbes that are widespread in nature. These organisms are commonly found in anaerobic environments such as rumen, anaerobic sediments of rivers and lakes, hyperthermal deep sea vents and even hypersaline environments. From an evolutionary standpoint they are close to the origin of life. Common to all methanogens is the biological production of methane by a unique pathway currently only found in archaea. Methanogens can grow on only a limited number of substrates such as H2 + CO2, formate, methanol and other methyl group-containing substrates and some on acetate. The free energy change associated with methanogenesis from these compounds allows for the synthesis of 1 (acetate) to a maximum of only 2 mol of ATP under standard conditions while under environmental conditions less than one ATP can be synthesized. Therefore, methanogens live close to the thermodynamic limit. To cope with this problem, they have evolved elaborate mechanisms of energy conservation using both protons and sodium ions as the coupling ion in one pathway. These energy conserving mechanisms are comprised of unique enzymes, cofactors and electron carriers present only in methanogens. This review will summarize the current knowledge of energy conservation of methanogens and focus on recent insights into structure and function of ion translocating enzymes found in these organisms.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the occurrence, importance and potential mechanism of anaerobic methane oxidation (AOM) in several northern peatlands ranging from ombrotrophic bog to minerotrophic fen.
Abstract: This study involved in vitro assays of peat soil to investigate the occurrence, importance and potential mechanism(s) of anaerobic methane oxidation (AOM) in several northern peatlands ranging from ombrotrophic bog to minerotrophic fen. Although strong evidence suggests that AOM is linked to sulfate reduction in marine sediments, very little is known about AOM in freshwater systems such as northern peatlands, which have large methane (CH 4 ) production and are a significant source of atmospheric CH 4 . Our results showed a mean net AOM rate of 17 ± 2.6 nmol kg − 1 s − 1 with a maximum rate of 176 nmol kg − 1 s − 1 for a minerotrophic fen in central New York. AOM was demonstrated with three independent methods to verify our results: (a) additions of methanogenic inhibitors, (b) stable isotope enrichment ( 13 C-CH 4 ), and (c) natural abundance stable isotope analysis ( 13 C-CH 4 ). These experiments confirmed that AOM occurs simultaneously with methanogenesis, consumes a significant portion of gross CH 4 p...

Journal ArticleDOI
TL;DR: Phase-separated two-stage anaerobic process was examined and evaluated using artificial organic solid waste in laboratory scale and hydrogenogenic operation was more suitable to combine methanogenic process than solublizing operation, obtaining almost the same levels of overall removal efficiency in both COD and VSS.

Journal ArticleDOI
TL;DR: A new species is proposed, Methanogenium boonei, with strain AK-7 as the type strain of CO2-reducing methanogens, which is a globally important process leading to methane hydrate deposits, cold seeps, physical instability of sediment, and atmospheric methane emissions.
Abstract: Methanogenesis in cold marine sediments is a globally important process leading to methane hydrate deposits, cold seeps, physical instability of sediment, and atmospheric methane emissions. We employed a multidisciplinary approach that combined culture-dependent and -independent analyses with geochemical measurements in the sediments of Skan Bay, Alaska (53°N, 167°W), to investigate methanogenesis there. Cultivation-independent analyses of the archaeal community revealed that uncultivated microbes of the kingdoms Euryarchaeota and Crenarchaeota are present at Skan Bay and that methanogens constituted a small proportion of the archaeal community. Methanogens were cultivated from depths of 0 to 60 cm in the sediments, and several strains related to the orders Methanomicrobiales and Methanosarcinales were isolated. Isolates were psychrotolerant marine-adapted strains and included an aceticlastic methanogen, strain AK-6, as well as three strains of CO2-reducing methanogens: AK-3, AK7, and AK-8. The phylogenetic positions and physiological characteristics of these strains are described. We propose a new species, Methanogenium boonei, with strain AK-7 as the type strain.

Journal ArticleDOI
TL;DR: The results suggest that microbes involved in the degradation of LCFAs under methanogenic conditions might not belong only to the family Syntrophomonadaceae, as most anaerobic LCFA-degrading microbes do, but may also be found in phylogenetically diverse bacterial groups.
Abstract: We investigated long-chain fatty acid (LCFA)-degrading anaerobic microbes by enrichment, isolation, and RNA-based stable isotope probing (SIP). Primary enrichment cultures were made with each of four LCFA substrates (palmitate, stearate, oleate, or linoleate, as the sole energy source) at 55°C or 37°C with two sources of anaerobic granular sludge as the inoculum. After several transfers, we obtained seven stable enrichment cultures in which LCFAs were converted to methane. The bacterial populations in these cultures were then subjected to 16S rRNA gene-based cloning, in situ hybridization, and RNA-SIP. In five of seven enrichment cultures, the predominant bacteria were affiliated with the family Syntrophomonadaceae. The other two enrichment cultures contained different bacterial populations in which the majority of members belonged to the phylum Firmicutes and the class Deltaproteobacteria. After several attempts to isolate these dominant bacteria, strain MPA, belonging to the family Syntrophomonadaceae, and strain TOL, affiliated with the phylum Firmicutes, were successfully isolated. Strain MPA converts palmitate to acetate and methane in syntrophic association with Methanospirillum hungatei. Even though strain TOL assimilated [13C]palmitate in the original enrichment culture, strain TOL has not shown the ability to degrade LCFAs after isolation. These results suggest that microbes involved in the degradation of LCFAs under methanogenic conditions might not belong only to the family Syntrophomonadaceae, as most anaerobic LCFA-degrading microbes do, but may also be found in phylogenetically diverse bacterial groups.

Journal ArticleDOI
TL;DR: In this article, the authors investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function and suggested a transient input of organic matter, possibly of terrestrial origin.
Abstract: Summary 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 μm) dominated by the sand-sized fraction (63–1000 μm). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH4 transport through Ranunculus stems and an increase in water column CH4 concentration, while the sediment CH4 concentration increased 100-fold between February and April. A marked seasonal enrichment in the δ15N of N2 dissolved in the pore water correlated with CH4 flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.2 × 10−6 Tg CH4 year−1), this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture.

Journal ArticleDOI
TL;DR: Long‐term exposure of the methanogenic culture to nitrate resulted in an increase of N‐oxide reduction rates and decrease of methane production rates, which was attributed to changes in the microbial community structure due to nitrates addition.
Abstract: The effect of nitrate, nitrite, nitric oxide (NO), and nitrous oxide on a mixed, mesophilic (358C) methano- genic culture was investigated. Short-term inhibition assays were conducted at a concentration range of 10-350 mg N/L nitrate, 17-500 mg N/L nitrite, 0.02-0.8 mg N/L aqueous NO, and 19-191 mg N/L aqueous nitrous oxide. Simulta- neous methane production and N-oxide reduction was observed in 10 and 30 mg N/L nitrate and 0.02 mg N/L aqueous NO-amended cultures. However, addition of N-oxide resulted in immediate cessation of methanogenesis in all other cultures. Methanogenesis completely recovered subsequent to the complete reduction of N-oxides to nitro- gen gas in all N-oxide-amended cultures, with the exception of the 500 mg N/L nitrite- and 0.8 mg N/L aqueous NO-amended cultures. Partial recovery of methanogenesis was observed in the 500 mg N/L nitrite-amended culture in contrast to complete inhibition of methanogenesis in the 0.8 mg N/L aqueous NO-amended culture. Accumulation of volatile fatty acids was observed in both cultures at the end of the incubation period. Among all N-oxides, NO exerted the most and nitrate exerted the least inhibitory effect on the fermentative/methanogenic consortia. The effect of multiple additions of nitrate (300 mg N/L) on the same methanogenic culture was also investigated. Long-term exposure of the methanogenic culture to nitrate resulted in an increase of N-oxide reduction rates and decrease of methane production rates, which was attributed to changes in the microbial community structure due to nitrate addition. Biotechnol. Bioeng. 2007;96: 444-455.

Journal ArticleDOI
TL;DR: Investigation of Methanogenesis from main methane precursors H(2)/CO(2) and acetate and sediments from Lake Baldegg, Switzerland found slow adaptation of the psychrophilic microbial community to high acetate concentrations was observed.