scispace - formally typeset
Search or ask a question

Showing papers on "Microfluidics published in 2016"


Journal ArticleDOI
TL;DR: This critical review covers the current state of 3D printing for microfluidics, focusing on the four most frequently used printing approaches: inkjet, stereolithography (SLA), two photon polymerisation (2PP) and extrusion printing (focusing on fused deposition modeling).
Abstract: 3D printing has the potential to significantly change the field of microfluidics. The ability to fabricate a complete microfluidic device in a single step from a computer model has obvious attractions, but it is the ability to create truly three dimensional structures that will provide new microfluidic capability that is challenging, if not impossible to make with existing approaches. This critical review covers the current state of 3D printing for microfluidics, focusing on the four most frequently used printing approaches: inkjet (i3DP), stereolithography (SLA), two photon polymerisation (2PP) and extrusion printing (focusing on fused deposition modeling). It discusses current achievements and limitations, and opportunities for advancement to reach 3D printing's full potential.

764 citations


Journal ArticleDOI
TL;DR: This review discusses the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems and presents a comprehensive review of recent developments and key applications of inertialMicrofluidics systems according to their microchannel structures.
Abstract: In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re ≪ 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon.

711 citations


01 Dec 2016
TL;DR: In this article, the authors study the effect of wettability on viscously unfavorable fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts.
Abstract: Significance The simultaneous flow of multiple fluid phases through a porous solid occurs in many natural and industrial processes—for example, rainwater infiltrates into soil by displacing air, and carbon dioxide is stored in deep saline aquifers by displacing brine. It has been known for decades that wetting—the affinity of the solid to one of the fluids—can have a strong impact on the flow, but the microscale physics and macroscopic consequences remain poorly understood. Here, we study this in detail by systematically varying the wetting properties of a microfluidic porous medium. Our high-resolution images reveal the fundamental control of wetting on multiphase flow, elucidate the inherently 3D pore-scale mechanisms, and help explain the striking macroscopic displacement patterns that emerge. Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid–fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate’s affinity to the invading fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms—cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)—responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge—from pore filling to postbridging—are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions.

311 citations


Journal ArticleDOI
TL;DR: This work highlights recent advances in the application of droplet microfluidics in chip-based technologies, such as single-cell analysis tools, small-scale cell cultures, in-droplet chemical synthesis, high-throughput drug screening, and nanodevice fabrication.
Abstract: The ability to perform laboratory operations on small scales using miniaturized devices provides numerous benefits, including reduced quantities of reagents and waste as well as increased portability and controllability of assays. These operations can involve reaction components in the solution phase and as a result, their miniaturization can be accomplished through microfluidic approaches. One such approach, droplet microfluidics, provides a high-throughput platform for a wide range of assays and approaches in chemistry, biology and nanotechnology. We highlight recent advances in the application of droplet microfluidics in chip-based technologies, such as single-cell analysis tools, small-scale cell cultures, in-droplet chemical synthesis, high-throughput drug screening, and nanodevice fabrication.

270 citations


Journal ArticleDOI
TL;DR: This article provides easy-to-understand illustrations and targets to assist the research community in selecting proper polymer microfabrication strategies in microfluidics.
Abstract: Using polymer materials to fabricate microfluidic devices provides simple, cost effective, and disposal advantages for both lab-on-a-chip (LOC) devices and micro total analysis systems (μTAS). Polydimethylsiloxane (PDMS) elastomer and thermoplastics are the two major polymer materials used in microfluidics. The fabrication of PDMS and thermoplastic microfluidic device can be categorized as front-end polymer microchannel fabrication and post-end microfluidic bonding procedures, respectively. PDMS and thermoplastic materials each have unique advantages and their use is indispensable in polymer microfluidics. Therefore, the proper selection of polymer microfabrication is necessary for the successful application of microfluidics. In this paper, we give a short overview of polymer microfabrication methods for microfluidics and discuss current challenges and future opportunities for research in polymer microfluidics fabrication. We summarize standard approaches, as well as state-of-art polymer microfluidic fabrication methods. Currently, the polymer microfluidic device is at the stage of technology transition from research labs to commercial production. Thus, critical consideration is also required with respect to the commercialization aspects of fabricating polymer microfluidics. This article provides easy-to-understand illustrations and targets to assist the research community in selecting proper polymer microfabrication strategies in microfluidics.

241 citations


Journal ArticleDOI
Yong He1, Yan Wu1, Jianzhong Fu1, Qing Gao1, Jingjiang Qiu1 
TL;DR: This review focused on the advances of 3D printed microfluidic chips especially the use in the chemistry and biology (vascularization and organs on chips) and discussed how to choose the suitable 3D printing methods to print the desired micro fluidics.
Abstract: Three-dimensional (3D) printing, also called additive manufacturing (AM) or rapid prototyping (RP), is a layer by layer manufacturing method and now has been widely used in many areas such as organ printing, aerospace and industrial design. Now 3D printed microfluidics attract more and more interests for its rapid printing in the lab. In this review, we focused on the advances of 3D printed microfluidic chips especially the use in the chemistry and biology (vascularization and organs on chips). Based on the brief review of different 3D printing methods, we discussed how to choose the suitable 3D printing methods to print the desired microfluidics. We predict that microfluidics will be evolved from 2D chips to 3D cubes, printed hydrogel-based microfluidics will be reported and widely used, sensors & actuators could be integrated in the microfluidics during printing, and rapid assembling chips with printed microfluidic modules will be popular in the near future.

239 citations


Journal ArticleDOI
TL;DR: The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode and the future development of microfluidic based high throughput screening platform for drug discovery is discussed.

211 citations


Book ChapterDOI
04 Apr 2016

210 citations


Journal ArticleDOI
TL;DR: Monolithic integration of microfluidics and electronics on paper makes it possible to print 2D and 3D fluidic, electrofluidic, and electrical components on paper, and to fabricate devices using them.
Abstract: Paper microfluidics and printed electronics have developed independently, and are incompatible in many aspects. Monolithic integration of microfluidics and electronics on paper is demonstrated. This integration makes it possible to print 2D and 3D fluidic, electrofluidic, and electrical components on paper, and to fabricate devices using them.

201 citations


Journal ArticleDOI
TL;DR: This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy.
Abstract: The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup.

182 citations


Journal ArticleDOI
TL;DR: Several areas of development are proposed where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control.
Abstract: Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

Journal ArticleDOI
TL;DR: In this paper, 3D printing has been used to make intricate micro-scale architectures and have the potential of greatly simplifying the manufacturing process of biological applications such as tissue spheroid fabrication and pharmacology investigation.
Abstract: Microfluidics has found ubiquitous presence in biological applications such as tissue spheroid fabrication and pharmacology investigation. The increasing prevalence and complexity demand a highly adaptable fabrication method for the rapid and convenient production of these microfluidic systems. 3D printing, as an emerging fabrication technique, was investigated in this paper. Microfluidic features were fabricated using two most widely used 3D printing technologies namely the inkjet printing and filament deposition techniques. The printing resolution, accuracy, repeatability, surface roughness, wetting ability, and biocompatibility of the printed microfluidic chips were characterized. The capability of 3D printing was demonstrated by printing a number of microfluidic devices such as rotational flow device and gradient generator. Results showed that 3D printing techniques were successful in making intricate microscale architectures and have the potential of greatly simplifying the manufacturing process.

Journal ArticleDOI
TL;DR: The role of thermocapillarity as the change of surface tension due to temperature gradient in developing Marangoni flow in liquid films and conclusively bubble and drop actuation is discussed.
Abstract: This paper reviews the past and recent studies on thermocapillarity in relation to microfluidics. The role of thermocapillarity as the change of surface tension due to temperature gradient in developing Marangoni flow in liquid films and conclusively bubble and drop actuation is discussed. The thermocapillary-driven mass transfer (the so-called Benard-Marangoni effect) can be observed in liquid films, reservoirs, bubbles and droplets that are subject to the temperature gradient. Since the contribution of a surface tension-driven flow becomes more prominent when the scale becomes smaller as compared to a pressure-driven flow, microfluidic applications based on thermocapillary effect are gaining attentions recently. The effect of thermocapillarity on the flow pattern inside liquid films is the initial focus of this review. Analysis of the relation between evaporation and thermocapillary instability approves the effect of Marangoni flow on flow field inside the drop and its evaporation rate. The effect of thermocapillary on producing Marangoni flow inside drops and liquid films, leads to actuation of drops and bubbles due to the drag at the interface, mass conservation, and also gravity and buoyancy in vertical motion. This motion can happen inside microchannels with a closed multiphase medium, on the solid substrate as in solid/liquid interaction, or on top of a carrier liquid film in open microfluidic systems. Various thermocapillary-based microfluidic devices have been proposed and developed for different purposes such as actuation, sensing, trapping, sorting, mixing, chemical reaction, and biological assays throughout the years. A list of the thermocapillary based microfluidic devices along with their characteristics, configurations, limitations, and improvements are presented in this review.

Journal ArticleDOI
10 Aug 2016-ACS Nano
TL;DR: By demonstrating the monitoring of the transfusion process for a patient and the gas flow produced from an injector, it shows that TMS has a great potential in building a self-powered micro total analysis system.
Abstract: Liquid and gas flow sensors are important components of the micro total analysis systems (μTAS) for modern analytical sciences. In this paper, we proposed a self-powered triboelectric microfluidic sensor (TMS) by utilizing the signals produced from the droplet/bubble via the capillary and the triboelectrification effects on the liquid/solid interface for real-time liquid and gas flow detection. By alternating capillary with different diameters, the sensor’s detecting range and sensitivity can be adjusted. Both the relationship between the droplet/bubble and capillary size, and the output signal of the sensor are systematically studied. By demonstrating the monitoring of the transfusion process for a patient and the gas flow produced from an injector, it shows that TMS has a great potential in building a self-powered micro total analysis system.

Journal ArticleDOI
TL;DR: Progress in the application of droplet-based microfluidics for the generation of artificial cells and protocells is described.
Abstract: Artificial cells are best defined as micrometre-sized structures able to mimic many of the morphological and functional characteristics of a living cell. In this mini-review, we describe progress in the application of droplet-based microfluidics for the generation of artificial cells and protocells.

Journal ArticleDOI
TL;DR: This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.
Abstract: As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.

Journal ArticleDOI
TL;DR: This review focuses on recent advances of using microfluidic devices for the synthesis of drug-loaded nanoparticles with specific characteristics for enhanced cancer treatment and diagnosis as well as to investigate the bio-nanoparticle interaction.
Abstract: The controlled synthesis of functional nanoparticles with tunable structures and properties has been extensively investigated for cancer treatment and diagnosis. Among a variety of methods for fabrication of nanoparticles, microfluidics-based synthesis enables enhanced mixing and precise fluidic modulation inside microchannels, thus allowing for the flow-mediated production of nanoparticles in a controllable manner. This review focuses on recent advances of using microfluidic devices for the synthesis of drug-loaded nanoparticles with specific characteristics (such as size, composite, surface modification, structure and rigidity) for enhanced cancer treatment and diagnosis as well as to investigate the bio-nanoparticle interaction. The discussion on microfluidics-based synthesis may shed light on the rational design of functional nanoparticles for cancer-related pharmaceutical applications.

Journal ArticleDOI
TL;DR: The synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition are described, and their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics is exemplified.
Abstract: In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear polyglycerol offers further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics.

Journal ArticleDOI
TL;DR: New glass capillary microfluidic devices that perform three-dimensional (3D) splitting of droplets are presented that are able to produce a 3D split of both single emulsions and double emulsion into two and three portions, respectively.
Abstract: Microfluidic systems with splitting structures are excellent for increasing emulsion production. However, traditional two-dimensional (2D) lithographic systems require complex modification of the microchannel surfaces and achieve only 2D splitting of the droplets. Herein, we present new glass capillary microfluidic devices that perform three-dimensional (3D) splitting of droplets. These devices are simply constructed using different structural glass capillaries as the collection microchannels of the droplet microfluidic systems. We demonstrate that the devices are able to produce a 3D split of both single emulsions and double emulsions into two and three portions, respectively. These emulsions, after the splitting process, still have high monodispersity. We believe that this new technique for 3D splitting could be widely used, not only in the field of microfluidics but also in chemical/biological applications (e.g., drug delivery, micro-dispersion, etc.).

Journal ArticleDOI
TL;DR: This paper reviews the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate, and discusses the physical principles underlying different micro fluid viscometers, their unique features and limits of operation.
Abstract: The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids.

Journal ArticleDOI
02 May 2016-Langmuir
TL;DR: An on-chip hydrodynamic flow focusing approach for synthesis of alginate nanogels with adjustable pore size to achieve fine-tunable release profile of the encapsulated bioactive agents and could be considered as a promising approach for efficient polypeptides encapsulation and their sustained release.
Abstract: Alginate is a biopolymer with favorable pH-sensitive properties for oral delivery of peptides and proteins. However, conventional alginate nanogels have limitations such as low encapsulation efficiency because of drug leaching during bead preparation and burst release in high pH values. These shortcomings originate from large pore size of the nanogels. In this work, we proposed an on-chip hydrodynamic flow focusing approach for synthesis of alginate nanogels with adjustable pore size to achieve fine-tunable release profile of the encapsulated bioactive agents. It is demonstrated that the microstructure of nanogels can be controlled through adjusting flow ratio and mixing time directed on microfluidic platforms consisting of cross-junction microchannels. In this study, the average pore size of alginate nanogels (i.e., average molecular weight between cross-links, Mc) was related to synthesis parameters. Mc was calculated from equations based on equilibrium swelling theory and proposed methods to modify the...

Journal ArticleDOI
TL;DR: Magnetic particles are largely used in various applications and particularly in in-vitro biomedical diagnostic and bionanotechnology and are also successfully being exploited as a carrier of biomolecules in microsystems, microfluidics, lab-on-a-chip and for detection in specific biosensors.
Abstract: Magnetic particles are largely used in various applications and particularly in in-vitro biomedical diagnostic and bionanotechnology. In fact, they have been employed for extraction of various biomolecules even from crude samples and as solid support in numerous samples' preparation for in-vitro diagnosis. Nowadays, they are also successfully being exploited as a carrier of biomolecules in microsystems, microfluidics, lab-on-a-chip and for detection in specific biosensors. Before any use or any preparation of magnetic hybrid particles, various factors should be considered in order to perfectly target the suitable applications. For instance, in case of nucleic acid, the particles shouldn't induce any inhibition of biological amplification techniques. For microfluidic, these particles should be colloidal stable in order to avoid any jump in the microfluidic canals. Regarding biosensor, these particles need to be chemically well designed generally to enhance specific detection or specific signal.

Journal ArticleDOI
TL;DR: A three-dimensional droplet generating device that exhibits flow invariant behaviour and is robust to fluctuations in flow rate is reported that is capable of producing droplet volumes spanning four orders of magnitude.
Abstract: The translation of batch chemistries onto continuous flow platforms requires addressing the issues of consistent fluidic behaviour, channel fouling and high-throughput processing. Droplet microfluidic technologies reduce channel fouling and provide an improved level of control over heat and mass transfer to control reaction kinetics. However, in conventional geometries, the droplet size is sensitive to changes in flow rates. Here we report a three-dimensional droplet generating device that exhibits flow invariant behaviour and is robust to fluctuations in flow rate. In addition, the droplet generator is capable of producing droplet volumes spanning four orders of magnitude. We apply this device in a parallel network to synthesize platinum nanoparticles using an ionic liquid solvent, demonstrate reproducible synthesis after recycling the ionic liquid, and double the reaction yield compared with an analogous batch synthesis.

Journal ArticleDOI
TL;DR: The results demonstrate that high viscosity polymers can be easily manipulated for optical functionalizing of lab-on-a-chip devices through demonstration of direct printing of polymer microlenses onto microfluidic chips and optical fibre terminations.
Abstract: We report a novel method for direct printing of viscous polymers based on a pyro-electrohydrodynamic repulsion system capable of overcoming limitations on the material type, geometry and thickness of the receiving substrate. In fact, the results demonstrate that high viscosity polymers can be easily manipulated for optical functionalizing of lab-on-a-chip devices through demonstration of direct printing of polymer microlenses onto microfluidic chips and optical fibre terminations. The present system has great potential for applications from biomolecules to nano-electronics. Moreover, in order to prove the effectiveness of the system, the optical performance of such microlenses has been characterized by testing their imaging capabilities when the fibroblast cells were allowed to flow inside the microfluidic channel, showing one of their possible applications on-board a LoC platform.

Journal ArticleDOI
TL;DR: In this work, a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity is developed and registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity.
Abstract: In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity.

Journal ArticleDOI
TL;DR: Development in the field of microfluidics are discussed, being: screening, in particular high-throughput and combinatorial screening; mimicking of natural microenvironment ranging from 3D hydrogel-based cellular niches to organ-on-chip devices; and production of biomaterials with closely controlled properties.

Journal ArticleDOI
Na Wen1, Zhan Zhao1, Beiyuan Fan1, Deyong Chen1, Dong Men1, Junbo Wang1, Jian Chen1 
TL;DR: This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis and discusses future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.
Abstract: This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1) prototype demonstration of single-cell encapsulation in microfluidic droplets; (2) technical improvements of single-cell encapsulation in microfluidic droplets; (3) microfluidic droplets enabling single-cell proteomic analysis; (4) microfluidic droplets enabling single-cell genomic analysis; and (5) integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.

Journal ArticleDOI
TL;DR: In this paper, the authors highlight some of the recent advances in the mass production of highly uniform microfluidics droplets via parallelization and discuss outstanding issues including the design of channel geometries to ensure even distribution of fluids to each droplet generator, methods for large-scale and uniform fabrication of micro-channels, device materials for mechanically robust operation to withstand high-pressure injection, and development of commercially feasible fabrication techniques for three-dimensional micro-fluidic devices.
Abstract: Microfluidics affords precise control over the flow of multiphasic fluids in micron-scale channels. By manipulating the viscous and surface tension forces present in multiphasic flows in microfluidic channels, it is possible to produce highly uniform emulsion droplets one at a time. Monodisperse droplets generated based on microfluidics are useful templates for producing uniform microcapsules and microparticles for encapsulation and delivery of active ingredients as well as living cells. Also, droplet microfluidics have been extensively exploited as a means to enable highthroughput biological screening and assays. Despite the promise droplet-based microfluidics hold for a wide range of applications, low production rate ( >100) and networks of fluid channels that distribute fluid to each of these generators onto a single chip. To parallelize droplet generation and, at the same time, maintain high uniformity of emulsion droplets, several considerations have to be made including the design of channel geometries to ensure even distribution of fluids to each droplet generator, methods for large-scale and uniform fabrication of microchannels, device materials for mechanically robust operation to withstand high-pressure injection, and development of commercially feasible fabrication techniques for three-dimensional microfluidic devices. We highlight some of the recent advances in the mass production of highly uniform microfluidics droplets via parallelization and discuss outstanding issues.

Journal ArticleDOI
TL;DR: In-gel digital multiple displacement amplification (dMDA) was applied to purified DNA templates, cultured bacterial cells and human microbiome samples in the virtual microfluidics system, and whole-genome sequencing of single-cell MDA products was demonstrated with excellent coverage uniformity and markedly reduced chimerism.
Abstract: We have developed hydrogel-based virtual microfluidics as a simple and robust alternative to complex engineered microfluidic systems for the compartmentalization of nucleic acid amplification reactions. We applied in-gel digital multiple displacement amplification (dMDA) to purified DNA templates, cultured bacterial cells and human microbiome samples in the virtual microfluidics system, and demonstrated whole-genome sequencing of single-cell MDA products with excellent coverage uniformity and markedly reduced chimerism compared with products of liquid MDA reactions.

Journal ArticleDOI
TL;DR: This review will discuss and provide an overview of the microfluidics techniques based on glass capillary as a tool for the fabrication of advanced DDS, focusing on the production of droplet-based systems by single, double, and multiple emulsionmicrofluidic techniques.