scispace - formally typeset
Search or ask a question

Showing papers on "Organic matter published in 2007"


BookDOI
TL;DR: In this paper, the authors present a set of methods for soil sampling and analysis, such as: N.H.Hendershot, H.M.Hettiarachchi, C.C.De Freitas Arbuscular Mycorrhiza, Y.K.Soon and W.J.
Abstract: SOIL SAMPLING AND HANDLING, G.T. Patterson and M.R. Carter Soil Sampling Designs, D. Pennock, T. Yates, and J. Braidek Sampling Forest Soils, N. Belanger and K.C.J. Van Rees Measuring Change in Soil Organic Carbon Storage, B.H. Ellert, H.H. Janzen, A.J. VandenBygaart, and E. Bremer Soil Sample Handling and Storage, S.C. Sheppard and J.A. Addison Quality Control in Soil Chemical Analysis, C. Swyngedouw and R. Lessard DIAGNOSTIC METHODS for SOIL and ENVIRONMENTAL MANAGEMENT, J.J. Schoenau and I.P. O'Halloran Nitrate and Exchangeable Ammonium Nitrogen, D.G. Maynard, Y.P. Kalra, and J.A. Crumbaugh Mehlich 3 Extractable Elements, N. Ziadi and T. Sen Tran Sodium Bicarbonate Extractable Phosphorus, J.J. Schoenau and I. P. O'Halloran Boron, Molybdenum and Selenium, G. M. Hettiarachchi and U. C. Gupta Trace Element Assessment, W.H. Hendershot, H. Lalande, D. Reyes, and D. MacDonald Readily Soluble Aluminum and Manganese in Acid Soils, Y.K. Soon, N. Belanger, and W.H. Hendershot Lime Requirement, N. Ziadi and T. Sen Tran Ion Supply Rates Using Ion Exchange Resins, P. Qian, J.J. Schoenau, and N. Ziadi Environmental Soil Phosphorus Indices, A.N. Sharpley, P.J.A. Kleinman and J.L. Weld Electrical Conductivity and Soluble Ions, J.J. Miller and D. Curtin SOIL CHEMICAL ANALYSES, Y.K. Soon and W.H. Hendershot Soil Reaction and Exchangeable Acidity, W.H. Hendershot, H. Laland,e and M. Duquette Collection and Characterization of Soil Solutions, J.D. MacDonald, N. Belanger, S. Sauve, F. Courchesne, and W.H. Hendershot Ion Exchange and Exchangeable Cations, W.H. Hendershot, H. Lalande, and M. Duquette Non-Exchangeable Ammonium, Y.K. Soon and B.C. Liang Carbonates, T.B. Goh and A.R. Mermut Total and Organic Carbon, J.O. Skjemstad and J.A. Baldock Total Nitrogen, P.M. Rutherford, W.B. McGill, C.T. Figueiredo, and J.M. Arocena Chemical Characterization of Soil Sulphur, C.G. Kowalenko and M. Grimmett Total and Organic Phosphorus, I.P. O'Halloran and B.J. Cade-Menum Characterization of Available P by Sequential Extraction, H. Tiessen and J.O. Moir Extractable Al, Fe, Mn, and Si, F. Courchesne and M.C. Turmel Determining Nutrient Availability in Forest Soils, N. Belanger, David Pare, and W.H. Hendershot Chemical Properties of Organic Soils, A. Karam SOIL BIOLOGICAL ANALYSES, E. Topp and C.A. Fox Cultural Methods for Soil and Root Associated Microorganisms, J.J. Germida and J.R. de Freitas Arbuscular Mycorrhiza, Y. Dalpe and C. Hamel Root Nodule Bacteria and Symbiotic Nitrogen Fixation, D. Prevost and H. Antoun Microarthropods, J.P Winter and V.M. Behan-Pelletier Nematodes, T.A. Forge and J. Kimpinski Earthworms, M.J. Clapperton, G.H. Baker and C.A. Fox Enchytraeids, S.M. Adl Protozoa, S.M. Adl, D. Acosta-Mercado, and D.H. Lynn Denitrification Techniques for Soils, C.F. Drury, D.D. Myrold, E.G. Beauchamp, and W.D.Reynolds Nitrification Techniques in Soil Systems, C.F. Drury, S.C. Hart, and X.M. Yang Substrate-Induced Respiration and Selective Inhibition as Measures of Microbial Biomass in Soils, V.L. Bailey, J.L. Smith, and H. Bolton Jr. Assessment of Soil Biological Activity, R.P.Beyaert and C.A. Fox Soil ATP, R.P. Voroney, G. Wen, and R.P. Beyaert Lipid-Based Community Analysis, K.E. Dunfield Bacterial Community Analyses by Denaturing Gradient Gel Electrophoresis (DGGE), E. Topp, Y.-C. Tien, and A. Hartmann Indicators of Soil Food Web Properties, T.A. Forge and M. Tenuta SOIL ORGANIC MATTER ANALYSES, E.G. Gregorich and M.H. Beare Carbon Mineralization, D.W. Hopkins Mineralizable Nitrogen, Denis Curtin and C.A. Campbell Physically Uncomplexed Organic Matter, E.G. Gregorich and M.H. Beare Extraction and Characterization of Dissolved Organic Matter, M.H. Chantigny, D.A. Angers, K. Kaiser, and K. Kalbitz Soil Microbial Biomass C, N, P and S, R.P. Voroney, P.C. Brookes, and R.P. Beyaert Carbohydrates, M.H. Chantigny and D.A. Angers Organic Forms of Nitrogen, D.C. Olk Soil Humus Fractions, D.W. Anderson and J.J Schoenau Soil Organic Matter Analysis by Solid-State 13C Nuclear Magnetic Resonance Spectroscopy, M. J. Simpson and C. M. Preston Stable Isotopes in Soil and Environmental Research, B.H. Ellert and L. Rock SOIL PHYSICAL ANALYSES, D.A. Angers and F.J. Larney Particle Size Distribution, D. Kroetsch and C. Wang Soil Shrinkage, C.D. Grant Soil Density and Porosity, X. Hao, B.C. Ball, J.L.B. Culley, M.R. Carter, and G.W. Parkin Soil Consistency: Upper and Lower Plastic Limits, R.A. McBride Compaction and Compressibility, P. Defossez, T. Keller and G. Richard Field Soil Strength, G.C. Topp and D.R. Lapen Air Permeability, C.D. Grant and P.H. Groenevelt Aggregate Stability to Water, D.A. Angers, M.S. Bullock, and G.R. Mehuys Dry Aggregate Size Distribution, F.J. Larney Soil Air, R.E. Farrell and J.A. Elliott Soil-Surface Gas Emissions, P. Rochette and N. Bertrand Bulk Density Measurement in Forest Soils, D.G. Maynard and M.P. Curran Physical Properties of Organic Soils and Growing Media: Particle Size and Degree of Decomposition, L.E. Parent and J. Caron Physical Properties of Organic Soils and Growing Media: Water and Air Storage and Flow Dynamics, J. Caron, D.E. Elrick, J.C. Michel, and R. Naasz SOIL WATER ANALYSES, W.D. Reynolds and G.C. Topp Soil Water Analyses: Principles and Parameters, W.D. Reynolds and G.C. Topp Soil Water Content, G.C. Topp, G.W. Parkin, and Ty P.A Ferre Soil Water Potential, N.J. Livingston and G.C. Topp Soil Water Desorption and Imbibition: Tension and Pressure Techniques, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Long Column, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Psychrometry, W.D. Reynolds and G.C. Topp Saturated Hydraulic Properties: Laboratory Methods, W.D. Reynolds Saturated Hydraulic Properties: Well Permeameter, W.D. Reynolds Saturated Hydraulic Properties: Ring Infiltrometer, W.D. Reynolds Saturated Hydraulic Properties: Auger-Hole, G.C. Topp Saturated Hydraulic Properties: Piezometer, G.C. Topp Unsaturated Hydraulic Properties: Laboratory Tension Infiltrometer, F.J. Cook Unsaturated Hydraulic Properties: Laboratory Evaporation, O.O. B. Wendroth and N. Wypler Unsaturated Hydraulic Properties: Field Tension Infiltrometer, W.D. Reynolds Unsaturated Hydraulic Properties: Instantaneous Profile, W.D. Reynolds Estimation of Soil Hydraulic Properties, F.J. Cook and H.P. Cresswell Analysis of Soil Variability, B.C. Si, R.G. Kachanoski, and W.D. Reynolds APPENDIX Site Description, G.T. Patterson and J.A. Brierley General Safe Laboratory Operation Procedures, P. St-Georges INDEX

4,631 citations


Journal ArticleDOI
22 Nov 2007-Nature
TL;DR: It is shown that rising trends in DOC between 1990 and 2004 can be concisely explained by a simple model based solely on changes in deposition chemistry and catchment acid-sensitivity, and that the rise in DOC is integral to recovery from acidification.
Abstract: Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through mechanisms related to climate change, nitrogen deposition or changes in land use, and by implication suggest that current concentrations and fluxes are without precedent. All of these hypotheses imply that DOC levels will continue to rise, with unpredictable consequences for the global carbon cycle. Alternatively, it has been proposed that DOC concentrations are returning toward pre-industrial levels as a result of a gradual decline in the sulphate content of atmospheric deposition. Here we show, through the assessment of time series data from 522 remote lakes and streams in North America and northern Europe, that rising trends in DOC between 1990 and 2004 can be concisely explained by a simple model based solely on changes in deposition chemistry and catchment acid-sensitivity. We demonstrate that DOC concentrations have increased in proportion to the rates at which atmospherically deposited anthropogenic sulphur and sea salt have declined. We conclude that acid deposition to these ecosystems has been partially buffered by changes in organic acidity and that the rise in DOC is integral to recovery from acidification. Over recent decades, deposition-driven increases in organic matter solubility may have increased the export of DOC to the oceans, a potentially important component of regional carbon balances. The increase in DOC concentrations in these regions appears unrelated to other climatic factors.

1,622 citations


Journal ArticleDOI
TL;DR: A review of the use of fluorescence spectroscopic techniques to measure the intrinsic fluorescence of organic matter and the application of fluorescent DOM analysis in marine waters, freshwaters and wastewaters can be found in this paper.
Abstract: Dissolved organic matter (DOM) in aquatic systems originates from a range of sources. Some is allochthonous, transported from the surrounding landscape to the water body, and is derived from and influenced by the geology, land use and hydrology of its origin. Some is created in situ through microbial activity, which may provide an independent source of organic matter, or a recycling mechanism for that which has been transported into the water body. The relative contribution of each source depends upon the location and environmental conditions within and without the water body. Human activity is also a source of DOM, much of which is believed to be labile, which can enter the aquatic system through direct point discharges, diffuse leaching and aerial dispersal. Fluorescence spectroscopy can provide an excellent tool to source DOM fractions, and to monitor and understand DOM transformations in aquatic systems, as much DOM has an intrinsic fluorescence. In particular, recent advances in optical technology, enabling rapid investigation of shorter wavelengths, have enabled more detailed characterization of organic material and its reactions in water. In this article, we review the use of fluorescence spectroscopic techniques to measure the intrinsic fluorescence of organic matter and the application of fluorescent DOM analysis in marine waters, freshwaters and wastewaters. Copyright © 2007 John Wiley & Sons, Ltd.

916 citations


Journal ArticleDOI
TL;DR: The burial of organic matter in marine sediments represents the major link between “active” surface pools of carbon in the oceans, atmosphere, on land, and in marine sediment, and carbon pools that cycle on much longer, geologic time scales.
Abstract: The burial of organic matter (OM) in marine sediments represents the major link between “active” surface pools of carbon in the oceans, atmosphere, on land, and in marine sediment, and carbon pools that cycle on much longer, geologic time scales (i.e., carbon in sedimentary rock, coal, and petroleum deposits). It also plays some role in controlling atmospheric CO2 and O2 on these long time scales because in a highly simplified fashion OM burial in sediments can be thought of in terms of the balance between primary production and respiration on land and in the oceans.

845 citations


Journal ArticleDOI
TL;DR: Observations show that the degrading and nutrient-mobilizing components of the fungal community are spatially separated, which has important implications for biogeochemical studies of boreal forest ecosystems.
Abstract: Our understanding of how saprotrophic and mycorrhizal fungi interact to re-circulate carbon and nutrients from plant litter and soil organic matter is limited by poor understanding of their spatiotemporal dynamics. In order to investigate how different functional groups of fungi contribute to carbon and nitrogen cycling at different stages of decomposition, we studied changes in fungal community composition along vertical profiles through a Pinus sylvestris forest soil. We combined molecular identification methods with 14C dating of the organic matter, analyses of carbon:nitrogen (C:N) ratios and 15N natural abundance measurements. Saprotrophic fungi were primarily confined to relatively recently (< 4 yr) shed litter components on the surface of the forest floor, where organic carbon was mineralized while nitrogen was retained. Mycorrhizal fungi dominated in the underlying, more decomposed litter and humus, where they apparently mobilized N and made it available to their host plants. Our observations show that the degrading and nutrient-mobilizing components of the fungal community are spatially separated. This has important implications for biogeochemical studies of boreal forest ecosystems.

825 citations


Journal ArticleDOI
01 Aug 2007-Ecology
TL;DR: The results suggest that basic stoichiometric decomposition theory needs to be revised and ecosystem models restructured accordingly in order to predict ecosystem carbon storage responses to anthropogenic changes in nutrient availability.
Abstract: With anthropogenic nutrient inputs to ecosystems increasing globally, there are long-standing, fundamental questions about the role of nutrients in the decomposition of organic matter. We tested the effects of exogenous nitrogen and phosphorus inputs on litter decomposition across a broad suite of litter and soil types. In one experiment, C mineralization was compared across a wide array of plants individually added to a single soil, while in the second, C mineralization from a single substrate was compared across 50 soils. Counter to basic stoichiometric decomposition theory, low N availability can increase litter decomposition as microbes use labile substrates to acquire N from recalcitrant organic matter. This "microbial nitrogen mining" is consistently suppressed by high soil N supply or substrate N concentrations. There is no evidence for phosphorus mining as P fertilization increases short- and long-term mineralization. These results suggest that basic stoichiometric decomposition theory needs to be revised and ecosystem models restructured accordingly in order to predict ecosystem carbon storage responses to anthropogenic changes in nutrient availability.

783 citations


Journal ArticleDOI
15 Nov 2007-Nature
TL;DR: This work presents a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan and indicates that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide.
Abstract: Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales.

555 citations


Book
16 Apr 2007
TL;DR: Significance of Soil Organic Matter to Soil Quality/Health - An Overview, R. Weil and F. Magdoff Organic Matter Management Strategies, F.Magdoff and R.
Abstract: Significance of Soil Organic Matter to Soil Quality/Health - An Overview, R. Weil and F. Magdoff Organic Matter Management Strategies, F. Magdoff and R. Weil Soil Organic Matter Fractions and Their Relevance to Soil Quality/Health, M. Wander Stimulatory Effect of Humic Substances on Plant Growth, Y. Chen, M. De Nobili, and T. Aviad The Role of Soil Organic Matter and Soil Quality in Soil-Plant-Disease Interactions, A. Stone and H. Darby Contributions of Fungi to Soil Organic Matter in Agroecosystems, K.A. Nichols and S.F. Wright Connecting Belowground and Aboveground Food Webs: The Role of Organic Matter in Biological Buffering, P.L. Phelan Tillage and Residue Management Effects on Soil Organic Matter, A.J. Franzluebbers Strategies for Managing Soil Organic Matter to Supply Plant Nutrients, S. Seiter and W. Horvath Soil and Crop Management Effects on Soil Microbiology, A.C. Kennedy, T.L. Stubbs, and W.F. Schillinger Interactions between Organic Matter, Earthworms and Microorganisms in Promoting Plant Growth, C.A. Edwards and N.Q. Arancon

547 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the influence of the lower Jurassic Gordondale Member (Gordondale) on the total gas capacity of strata in the Peace River district, northeastern British Columbia.
Abstract: The Lower Jurassic Gordondale Member is an organic-rich mudrock and is widely considered to have potential as a shale gas reservoir. Influences of Gordondale mudrock composition on total gas capacities (sorbed and free gas) have been determined to assess the shale gas resource potential of strata in the Peace River district, northeastern British Columbia. Sorbed gas capacities of moisture-equilibrated samples increase over a range of 0.5 to 12 weight percent total organic carbon content (TOC). Methane adsorption capacities range from 0.05 cc/g to over 2 cc/g in organic-rich zones (at 6 MPa and 30°C). Sorption capacities of mudrocks under dry conditions are greater than moisture equilibrated conditions due to water occupation of potential sorption sites. However, there is no consistent decrease of sorption capacity with increasing moisture as the relationship is masked by both the amount of organic matter and thermal maturation level. Clays also affect total gas capacities in as much as clay-rich mudrocks have high porosity which may be available for free gas. Gordondale samples enriched with carbonate (calcite and dolomite) typically have lower total porosities than carbonate-poor rocks and hence have lower potential free gas contents. On a regional reservoir scale, a large proportion of the Gordondale total gas capacity is free gas storage (intergranular porosity), ranging from 0.1-22 Bcf/section (0.003-0.66 m3/section). Total gas-in-place capacity ranges from 1-31.4 Bcf/section (0.03-0.94 m3/section). The greatest potential for gas production is in the south of the study area (93-P) due to higher thermal maturity, TOC enrichment, higher reservoir pressure, greater unit thickness and improved fracture-potential.

443 citations


Journal ArticleDOI
Chun-Zhu Li1
01 Aug 2007-Fuel
TL;DR: A review of recent progress in the understanding of the pyrolysis and gasification behavior of Victorian brown coal can be found in this article, where a brief account of the effects of AAEM species on the pyrotechnic yields of brown coal is given.

442 citations


Journal ArticleDOI
TL;DR: The contributions of microbial biomass to soil organic matter appear to be much higher than the 1-5% reported by other researchers, and organic matter is intimately linked to nutrient release and transport in soils, nitrogen turnover rates, contaminant fate, soil quality, and fertility.
Abstract: Soil microbes are central to many soil processes, but due to the structural complexity of soil organic matter, the accurate quantification of microbial biomass contributions continues to pose a significant analytical challenge. In this study, microbes from a range of soils were cultured such that their molecular profile could be compared to that of soil organic matter and native vegetation. With the use of modern NMR spectroscopy, the contributions from microbial species can be discerned in soil organic matter and quantified. On the basis of these studies, the contributions of microbial biomass to soil organic matter appear to be much higher than the 1-5% reported by other researchers. In some soils, microbial biomass was found to contribute >50% of the extractable soil organic matter fractions and approximately 45% of the humin fraction and accounted for >80% of the soil nitrogen. These findings are significant because organic matter is intimately linked to nutrient release and transport in soils, nitrogen turnover rates, contaminant fate, soil quality, and fertility. Therefore, if in some cases soil organic matter and soil organic nitrogen are predominately of microbial origin, it is likely that this fraction, whether in the form of preserved material or living cells, plays an underestimated role in several soil processes.

Journal ArticleDOI
TL;DR: Fractionation of the water-extractable organic carbon showed that the ratio of hydrophobic to hydrophilic carbon increased to values greater than unity for stabilized compost, and confirmed the influence of solubilization, mineralization and organic matter transformation on the quality of the final compost.

Journal ArticleDOI
TL;DR: This article showed that simple sorption reactions do not stabilize the bulk of soil organic carbon in most mineral soils and pointed instead to stabilization to other mechanisms such as organo-Fe complexes or ternary associations among Fe oxides, OM and other minerals.

Journal ArticleDOI
TL;DR: A combination of solid-state 13C NMR, X-ray photoelectron spectroscopy (XPS) and sulfur Xray absorption near edge structure (S-XANES) techniques are used to characterize organic oxygen, nitrogen, and sulfur species and carbon chemical/structural features in kerogens as discussed by the authors.
Abstract: A combination of solid-state 13C NMR, X-ray photoelectron spectroscopy (XPS) and sulfur X-ray absorption near edge structure (S-XANES) techniques are used to characterize organic oxygen, nitrogen, and sulfur species and carbon chemical/structural features in kerogens. The kerogens studied represent a wide range of organic matter types and maturities. A van Krevelen plot based on elemental H/C data and XPS derived O/C data shows the well established pattern for type I, type II, and type III kerogens. The anticipated relationship between the Rock−Eval hydrogen index and H/C is independent of organic matter type. Carbon structural and lattice parameters are derived from solid-state 13C NMR analysis. As expected, the amount of aromatic carbon, measured by both 13C NMR and XPS, increases with decreasing H/C. The correlation between aromatic carbon and Rock−Eval Tmax, an indicator of maturity, is linear for types II and IIIC kerogens, but each organic matter type follows a different relationship. The average al...

Journal ArticleDOI
TL;DR: In this paper, the authors studied the effect of adding different amounts of carbon on the bacterial change in growth rate for two soils with different organic matter content and found that bacterial growth in most of the 28 soils was limited by a lack of carbon, indicated by an increased bacterial growth rate 48 h after adding glucose.
Abstract: Lack of carbon has been assumed to be the most common limiting factor for bacterial growth in soil, although there are reports of limitation by other nutrients, e.g. nitrogen and phosphorus. We have studied which nutrient(s) limited instantaneous growth rates of bacteria in 28 Swedish soils using the thymidine or leucine incorporation technique to measure increased growth rate after adding different combinations of organic carbon (glucose), nitrogen and phosphorus. The soils ranged in pH between 3.1 and 8.9, in organic matter content between I% and 91 % and in soil C/N ratio between 10 and 28. We also tested the effect of adding different amounts of carbon on the bacterial change in growth rate for two soils with different organic matter content. We found that bacterial growth in most of the 28 soils was limited by a lack of carbon, indicated by an increased bacterial growth rate 48 h after adding glucose. In some soils, adding carbon together with nitrogen increased the bacterial growth rates even further. In three soils no effects were seen upon adding nutrients separately, but adding carbon and nitrogen together increased bacterial growth rates. Nitrogen addition tended to decrease bacterial growth rates, while phosphorus addition had little effect in most soils. No correlations were found between the soil C/N ratio, ammonium or nitrate content in soil and bacterial growth limitation, indicating that even soils with a C/N ratio of 28 could be carbon limited. Although the interpretation of the effects of a single limiting nutrient was in most cases straightforward, an interaction between the amount of carbon added and the organic matter content of the soil confounded the interpretation of the extent of a second limiting nutrient. (c) 2007 Elsevier Ltd. All rights reserved.

Journal ArticleDOI
TL;DR: In this article, the authors performed a short-term (12-h) laboratory incubation experiment using tropical rain forest soil amended with either water (as a control) or dissolved organic matter (DOM) leached from native plant litter, and analyzed the effects of the treatments on soil respiration and microbial community composition.
Abstract: Organic matter decomposition and soil CO2 efflux are both mediated by soil microorganisms, but the potential effects of temporal variations in microbial community composition are not considered in most analytical models of these two important processes. However, inconsistent relationships between rates of heterotrophic soil respiration and abiotic factors, including temperature and moisture, suggest that microbial community composition may be an important regulator of soil organic matter (SOM) decomposition and CO2 efflux. We performed a short-term (12-h) laboratory incubation experiment using tropical rain forest soil amended with either water (as a control) or dissolved organic matter (DOM) leached from native plant litter, and analyzed the effects of the treatments on soil respiration and microbial community composition. The latter was determined by constructing clone libraries of small-subunit ribosomal RNA genes (SSU rRNA) extracted from the soil at the end of the incubation experiment. In contrast to the subtle effects of adding water alone, additions of DOM caused a rapid and large increase in soil CO2 flux. DOM-stimulated CO2 fluxes also coincided with profound shifts in the abundance of certain members of the soil microbial community. Our results suggest that natural DOM inputs may drive high rates of soil respiration by stimulating an opportunistic subset of the soil bacterial community, particularly members of the Gammaproteobacteria and Firmicutes groups. Our experiment indicates that variations in microbial community composition may influence SOM decomposition and soil respiration rates, and emphasizes the need for in situ studies of how natural variations in microbial community composition regulate soil biogeochemical processes.

Journal ArticleDOI
TL;DR: In this article, the relationship between soil organic carbon (SOC) pools used in RothC and fractions separated through a fractionation procedure was tested using 123 topsoil samples from agricultural sites (arable land, grassland and alpine pasture) across Switzerland.
Abstract: Summary Understanding the response of soil organic carbon (SOC) to environmental and management factors is necessary for estimating the potential of soils to sequester atmospheric carbon. Changes over time in the amount and distribution of SOC fractions with different turnover rates can be estimated by means of soil SOC models such as RothC, which typically consider two to five SOC pools. Ideally, these pools should correspond to measurable SOC fractions. The aim of this study was to test the relationship between SOC pools used in RothC and fractions separated through a fractionation procedure. A total of 123 topsoil samples from agricultural sites (arable land, grassland and alpine pasture) across Switzerland were used. A combination of physical and chemical methods resulted in two sensitive (particulate organic matter and dissolved organic carbon), two slow (carbon associated to clay and silt or stabilized in aggregates) and one passive (oxidation-resistant carbon) SOM fractions. These fractions were compared with the estimated equilibrium model pools when the corresponding soils were modelled with RothC. Analysis revealed strong correlations between SOC in measured fractions and modelled pools. Spearman’s rank correlation coefficients varied between 0.82 for decomposable plant materials (DPM), 0.76 for resistant plant materials (RPM), 0.99 for humified organic matter (HUM) and biomass (BIO), and 0.73 for inert organic matter (IOM). The results show that the proposed fractionation procedure can be used with minor adaptations to identify measurable SOC fractions, which can be used to initialize and evaluate RothC for a wide range of site conditions.

Journal ArticleDOI
TL;DR: In this paper, the mobilization of arsenic (As) to the groundwater was studied in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam.

Journal ArticleDOI
TL;DR: In this paper, the spatial distribution of organic carbon (C) in free stable microaggregates (20-250 μm; not encapsulated within macro aggregates) from one Inceptisol and two Oxisols in relation to current theories of the mechanisms of their formation was investigated.
Abstract: This study investigates the spatial distribution of organic carbon (C) in free stable microaggregates (20–250 μm; not encapsulated within macroaggregates) from one Inceptisol and two Oxisols in relation to current theories of the mechanisms of their formation. Two-dimensional micro- and nano-scale observations using synchrotron-based Fourier-transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded maps of the distribution of C amounts and chemical forms. Carbon deposits were unevenly distributed within microaggregates and did not show any discernable gradients between interior and exterior of aggregates. Rather, C deposits appeared to be patchy within the microaggregates. In contrast to the random location of C, there were micron-scale patterns in the spatial distribution of aliphatic C–H (2922 cm−1), aromatic C=C and N–H (1589 cm−1) and polysaccharide C–O (1035 cm−1). Aliphatic C forms and the ratio of aliphatic C/aromatic C were positively correlated (r2 of 0.66–0.75 and 0.27–0.59, respectively) to the amount of O–H on kaolinite surfaces (3695 cm−1), pointing at a strong role for organo-mineral interactions in C stabilization within microaggregates and at a possible role for molecules containing aliphatic C-H groups in such interactions. This empirical relationship was supported by nanometer-scale observations using NEXAFS which showed that the organic matter in coatings on mineral surfaces had more aliphatic and carboxylic C with spectral characteristics resembling microbial metabolites than the organic matter of the entire microaggregate. Our observations thus support models of C stabilization in which the initially dominant process is adsorption of organics on mineral surfaces rather than occlusion of organic debris by adhering clay particles.

Journal Article
TL;DR: It emerged that OM amendments have great potential but, at the same time, present some inconsistencies in their application: more investigation on the mechanisms by which OM acts on disease suppression is needed to make the use of these materials more predictable.
Abstract: SUMMARY The use of organic matter (OM) has been proposed, for both conventional and biological agriculture systems, to decrease the incidence of plant diseases caused by soilborne pathogens. In this work we review reports on the application of OM amendments, focusing on the suppressive capacity of different OM materials and the response of different soilborne pathogens. A total of 250 articles were analysed, with 2423 experimental case studies. The effect of OM amendments was found to be suppressive in 45% and non-significant in 35% of the cases. In 20% of the cases, a significant increase of disease incidence was observed. Compost was the most suppressive material, with more than 50% of cases showing effective disease control. The effect of crop residues was more variable: it was suppressive in 45% of the cases, but enhanced disease in 28%. Finally, significant disease suppression with peat was recorded only in 4% of the experiments. The ability of OM to suppress disease varied largely with different pathogens: it was observed in more than 50% of the cases for Verticillium, Thielaviopsis, Fusarium and Phytophthora. In contrast, effective control of Rhizoctonia solani was achieved only in 26% of the cases. From this review it emerged that OM amendments have great potential but, at the same time, present some inconsistencies in their application. More investigation on the mechanisms by which OM acts on disease suppression is needed to make the use of these materials more predictable.

Journal ArticleDOI
TL;DR: Comparisons of analyses of archived samples from conventional and organic production systems demonstrated statistically higher levels of quercetin and kaempferol aglycones in organic tomatoes, whereas the levels of flavonoids did not vary significantly in conventional treatments.
Abstract: Understanding how environment, crop management, and other factors, particularly soil fertility, influence the composition and quality of food crops is necessary for the production of high-quality nutritious foods. The flavonoid aglycones quercetin and kaempferol were measured in dried tomato samples (Lycopersicon esculentum L. cv. Halley 3155) that had been archived over the period from 1994 to 2004 from the Long-Term Research on Agricultural Systems project (LTRAS) at the University of CaliforniasDavis, which began in 1993. Conventional and organic processing tomato production systems are part of the set of systems compared at LTRAS. Comparisons of analyses of archived samples from conventional and organic production systems demonstrated statistically higher levels (P < 0.05) of quercetin and kaempferol aglycones in organic tomatoes. Ten-year mean levels of quercetin and kaempferol in organic tomatoes [115.5 and 63.3 mg g -1 of dry matter (DM)] were 79 and 97% higher than those in conventional tomatoes (64.6 and 32.06 mg g -1 of DM), respectively. The levels of flavonoids increased over time in samples from organic treatments, whereas the levels of flavonoids did not vary significantly in conventional treatments. This increase corresponds not only with increasing amounts of soil organic matter accumulating in organic plots but also with reduced manure application rates once soils in the organic systems had reached equilibrium levels of organic matter. Well-quantified changes in tomato nutrients over years in organic farming systems have not been reported previously.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the distribution and the elemental and isotopic composition of organic matter in nine tidal estuaries along the Atlantic coast of Europe (Elbe, Ems, Thames, Rhine, Scheldt, Loire, Gironde, Douro and Sado).

Journal ArticleDOI
TL;DR: The present study showed that the dominant mechanism for this process of soil Fe-oxyhydroxide reduction is OM release, and OM should be systematically monitored in experimental studies dedicated to understand trace metal mobility in wetland soils.

Journal ArticleDOI
TL;DR: In this paper, the Yangtze River (Changjiang) system was analyzed to determine the sources and distribution of organic and inorganic matter within the river system, and the dominance of C-3 plants throughout the entire basin is indicated by δ13C and δ15N values, which range from −28.8‰ to −24.9Õ.
Abstract: Dissolved, particulate, soil and plant samples were collected from the Yangtze River (Changjiang) system in May 1997 and May 2003 to determine the sources and distribution of organic and inorganic matter within the river system. Average dissolved organic carbon (DOC) concentrations within the main stream were 105 μM C in 1997 and 108 μM C in 2003. Particulate organic carbon (POC) ranged from 0.5% to 2.5% of total suspended matter (TSM). Both dissolved inorganic carbon (DIC) and particulate inorganic carbon (PIC) concentrations decreased from upper to lower reaches of the river, within the ranges 1.2–2.7 mM and 0.08–4.3% of TSM, respectively. δ13C and δ15N values for tributaries and the main stream varied from −26.8‰ to −25.1‰ and 2.8‰ to 6.0‰, respectively. A large spatial variation in particulate organic matter (POM) is recorded along the main stream, probably due to the contributions of TSM from major tributaries and POM input from local vegetation sources. The dominance of C-3 plants throughout the entire basin is indicated by δ13C and δ15N values, which range from −28.8‰ to −24.3‰ and from −0.9‰ to 5.5‰, respectively. The δ13C and δ15N values of organic matter within surface soil from alongside tributaries and the main stream vary from −28.9‰ to −24.3‰ and 2.7‰ to 4.5‰, respectively. Although these differences are subtle, there is a slight enrichment of 15N in soils along the main stream. Various approaches, such as C/N and stable isotopes, were used to trace the sources of organic matter within the river. Riverine POM is mostly derived from soil; the contribution from phytoplankton is minor and difficult to trace via the composition of particles. POC flux has decreased from >5 × 106 t yr−1 during the period 1960–1980 to about 2 × 106 t yr−1 in 1997. This trend can be explained by decreasing sediment load within the Yangtze River. The export of TOC from the Yangtze River at the end of the 20th Century is approximately equivalent to that of the Zaire River, less than that of the Amazon River, and higher than that of other large rivers such as the Mississippi. Large amounts of DOC and POC were transported to coastal areas of the East China Sea over a short period during 1998 flood events, containing large amounts of nutrients and pollutants. Such an event could be an important trigger for coastal environmental problems and changes to the health of ecosystems.

Journal ArticleDOI
TL;DR: In this article, the authors examined the effects of tillage, stubble and fertilizer management on the distribution of organic matter and nutrients in the topsoil of a Luvisol in a semi-arid, subtropical environment in southern Queensland, Australia.
Abstract: No-till (NT) system for grain cropping is increasingly being practised in Australia. While benefits of NT, accompanied by stubble retention, are almost universal for soil erosion control, effects on soil organic matter and other soil properties are inconsistent, especially in a semi-arid, subtropical environment. We examined the effects of tillage, stubble and fertilizer management on the distribution of organic matter and nutrients in the topsoil (0‐30 cm) of a Luvisol in a semi-arid, subtropical environment in southern Queensland, Australia. Measurements were made at the end of 9 years of NT, reduced till (RT) and conventional till (CT) practices, in combination with stubble retention and fertilizer N (as urea) application strategies for wheat (Triticum aestivum L.) cropping. In the top 30 cm depth, the mean amount of organic C increased slightly after 9 years, although it was similar under all tillage practices, while the amount of total N declined under CTand RT practices, but not under NT. In the 0‐10 cm depth, the amounts of organicC and total N were significantly greater under NT than under RTor CT. No-till had 1.94 Mg ha 1 (18%) more organicC and 0.20 Mg ha 1 (21%) more total N than CT. In the 0‐30 cm depth, soil under NT practice had 290 kg N ha 1 more than that under the CT practice, most of it in the top 10 cm depth. Microbial biomass N was similar for all treatments. Under NT, there was a concentration gradient in organic C, total N and microbial biomass N, with concentrations decreasing from 0‐2.5 to 5‐10 cm depths. SoilpHwasnotaffectedbytillageorstubbletreatmentsinthe0‐10 cmdepth,butdecreasedsignificantlyfrom7.5to7.2withN fertilizer application. Exchangeable Mg and Na concentration, cation exchange capacity and exchangeable Na percentage in the 0‐10 cmdepthweregreaterunderCTthanunderRTandNT,whileexchangeableKandbicarbonate-extractablePconcentrations were greater under NT than under CT. Therefore, NTand RT practices resulted in significant changes in soil organic C and N and exchangeable cations in the topsoil of a Luvisol, when compared with CT. The greater organic matter accumulation close to the soil surface and solute movement in these soils under NT practice would be beneficial to soil chemical and physical status and crop production in the long-term, whereas the concentration of nutrients such as P and K in surface layers may reduce their availability to crops. # 2006 Elsevier B.V. All rights reserved.

Journal ArticleDOI
TL;DR: Despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species), and depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.

Journal ArticleDOI
TL;DR: The application of the T-peak as a proxy for [DON] in natural waters may have limitations in coastal zones with significant terrestrial DOM input.

Journal ArticleDOI
TL;DR: The results showed that the pH, electrical conductivity, concentrations of total nitrogen (N) and the organic matter received from compost treatment were generally higher than those received through CF treatment.
Abstract: After cultivating 24 crops of vegetables for three consecutive years in a greenhouse, the effects of different application rates of compost (Rate 1, 270 kg N ha−1 y−1; Rate 2, 540 kg N ha−1 y−1; Rate 3, 810 kg N ha−1 y−1; Rate 4, 1,080 kg N ha−1 y−1) were compared with the effects of chemical fertilizer (CF) and no application of fertilizer treatments (CK) for some selected soil chemical properties, microbial populations and soil enzyme activities (dehydrogenase, cellulase, β-glucosidase, protease, urease, arysulphatase, and acid and alkaline phosphatases). The results show that the pH, electrical conductivity, concentrations of total nitrogen (N) and the organic matter received from compost treatment were generally higher than those received through CF treatment. The soil microbial biomass, populations of bacteria, fungi and actinomycetes, as well as soil enzyme activities increased significantly in the compost-treated soils compared with the CF-treated soil. In most instances, no significant in...

Journal ArticleDOI
TL;DR: How enzyme activity and efficiency changed with successional time in organic and mineral soils taken from the 120 000-year-old Franz Josef soil development sequence, New Zealand, is examined to suggest that activity patterns for C-, N- and S-hydrolyzing enzymes were obscured by simultaneous and opposing changes in enzyme efficiency and microbial biomass.
Abstract: During primary succession, the abundance of carbon (C) and nitrogen (N) in soil increases, while phosphorus (P) declines. These changes in nutrient concentrations in organic matter are likely to play an important role in controlling enzyme-mediated nutrient mineralization. We examined how enzyme activity and efficiency changed with successional time in organic and mineral soils taken from the 120 000-year-old Franz Josef soil development sequence, New Zealand, and the relationship between enzyme activity and efficiency and soil nutrient concentrations. We found that the activity of enzymes involved in P mineralization increased with site age across the Franz Josef chronosequence, while the activity of enzymes regulating C and N mineralization declined in organic but not mineral soil. Sulfatase activity peaked at an intermediate-aged site, possibly indicating a transient period of S limitation. The activity of phosphatase enzymes was negatively correlated with the concentration of P in the soil, whereas activity of C-, N- and S-hydrolyzing enzymes was not strongly dependent on nutrient concentrations. When assessed as efficiency (activity per unit microbial biomass), there were strong patterns of increasing efficiency of P-, and decreasing efficiency of C- and N-hydrolyzing enzymes with site age. We suggest that activity patterns for C-, N- and S-hydrolyzing enzymes were obscured by simultaneous and opposing changes in enzyme efficiency and microbial biomass. In mineral soil, efficiency of enzymes was negatively correlated with soil nutrient availability. In contrast, in organic soil, efficiency of C-, N- and S-hydrolyzing enzymes was positively correlated with soil P, while efficiency of P-hydrolyzing enzymes was negatively correlated with soil P. The increase in efficiency of P-hydrolyzing enzymes, and decrease in efficiency of C-, N- and S-hydrolyzing enzymes with site age was accompanied by a shift in microbial community composition towards higher relative abundances of fungi. Changes in enzyme efficiency with site age are likely to be due to both constitutive differences in enzyme production, and down-regulation of enzyme expression.

Journal ArticleDOI
TL;DR: An extraction method in which the separation of proteins from the inorganic and organic constituents of the soil matrix was achieved by a combination of 0.1 M NaOH treatment and phenol extraction enabled the analysis of the metaproteome of soil and groundwater samples and provides a means to study the diversity of environmental microbial communities while addressing functional aspects more directly than metagenome or even metatranscriptome analysis.
Abstract: Using proteins from soil or groundwater as functional biomarkers requires efficient extraction. We developed an extraction method in which the separation of proteins from the inorganic and organic constituents of the soil matrix was achieved by a combination of 0.1 M NaOH treatment and phenol extraction. Incubation with NaOH released humic acids and proteins from soil minerals, and simultaneously, disrupted microorganisms. The subsequent phenol extraction separated the proteins from the humic organic matter. Protein extracts were applied to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 2D-electrophoresis (2-DE). Spots and bands were excised and individual proteins identified by liquid chromatography online linked to mass spectrometry (MS) via electrospray ionization source (LC-ESI-MS). To assess the suitability of the method for the functional analysis of environmental metaproteomes, it was applied to soil that had been enriched in chlorophenoxy acid-degrading bacteria by incubation with 2,4-dichlorophenoxy acetic acid (2,4-D) for 22 days. The method was also used to analyze groundwater from the aquifer of a chlorobenzene-contaminated site. The identification of enzymes such as chlorocatechol dioxygenases was consistent with bacterial metabolic pathways expected to be expressed in these samples. The protocol enabled thus the analysis of the metaproteome of soil and groundwater samples. It thereby provides a means to study the diversity of environmental microbial communities while addressing functional aspects more directly than metagenome or even metatranscriptome analysis.